# Copyright (c) Microsoft Corporation and HuggingFace # Licensed under the MIT License. from typing import Any, Dict, List, Mapping import numpy as np import torch from ...utils import is_cython_available, requires_backends if is_cython_available(): import pyximport pyximport.install(setup_args={"include_dirs": np.get_include()}) from . import algos_graphormer # noqa E402 def convert_to_single_emb(x, offset: int = 512): feature_num = x.shape[1] if len(x.shape) > 1 else 1 feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64) x = x + feature_offset return x def preprocess_item(item, keep_features=True): requires_backends(preprocess_item, ["cython"]) if keep_features and "edge_attr" in item.keys(): # edge_attr edge_attr = np.asarray(item["edge_attr"], dtype=np.int64) else: edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all if keep_features and "node_feat" in item.keys(): # input_nodes node_feature = np.asarray(item["node_feat"], dtype=np.int64) else: node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all edge_index = np.asarray(item["edge_index"], dtype=np.int64) input_nodes = convert_to_single_emb(node_feature) + 1 num_nodes = item["num_nodes"] if len(edge_attr.shape) == 1: edge_attr = edge_attr[:, None] attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64) attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1 # node adj matrix [num_nodes, num_nodes] bool adj = np.zeros([num_nodes, num_nodes], dtype=bool) adj[edge_index[0], edge_index[1]] = True shortest_path_result, path = algos_graphormer.floyd_warshall(adj) max_dist = np.amax(shortest_path_result) input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type) attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token # combine item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding item["attn_bias"] = attn_bias item["attn_edge_type"] = attn_edge_type item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding item["out_degree"] = item["in_degree"] # for undirected graph item["input_edges"] = input_edges + 1 # we shift all indices by one for padding if "labels" not in item: item["labels"] = item["y"] return item class GraphormerDataCollator: def __init__(self, spatial_pos_max=20, on_the_fly_processing=False): if not is_cython_available(): raise ImportError("Graphormer preprocessing needs Cython (pyximport)") self.spatial_pos_max = spatial_pos_max self.on_the_fly_processing = on_the_fly_processing def __call__(self, features: List[dict]) -> Dict[str, Any]: if self.on_the_fly_processing: features = [preprocess_item(i) for i in features] if not isinstance(features[0], Mapping): features = [vars(f) for f in features] batch = {} max_node_num = max(len(i["input_nodes"]) for i in features) node_feat_size = len(features[0]["input_nodes"][0]) edge_feat_size = len(features[0]["attn_edge_type"][0][0]) max_dist = max(len(i["input_edges"][0][0]) for i in features) edge_input_size = len(features[0]["input_edges"][0][0][0]) batch_size = len(features) batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float) batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long) batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long) batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long) batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long) batch["input_edges"] = torch.zeros( batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long ) for ix, f in enumerate(features): for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]: f[k] = torch.tensor(f[k]) if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0: f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf") batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"] batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[ "attn_edge_type" ] batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"] batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"] batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"] batch["input_edges"][ ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], : ] = f["input_edges"] batch["out_degree"] = batch["in_degree"] sample = features[0]["labels"] if len(sample) == 1: # one task if isinstance(sample[0], float): # regression batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) else: # binary classification batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features])) else: # multi task classification, left to float to keep the NaNs batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0)) return batch