File size: 3,927 Bytes
5b8715f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- nlp
---

# TinyLlama-1.1B-Tele Model Card

## Model Summary

The language model TinyLlama-1.1B-Tele is a Transformer with **1.1 billion** parameters, specialized in telecommunications. It is based on [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama_v1.1) and was continutally pretrained on [Tele-Data](https://huggingface.co/datasets/AliMaatouk/Tele-Data), a large-scale dataset of approximately 2.5 billion tokens of telecommunications material, including articles, standards, and general web content related to the telecommunications domain.

When assessed against telecommunications benchmarks such as [Tele-Eval](https://huggingface.co/datasets/AliMaatouk/Tele-Eval), TinyLlama-1.1B-Tele outperforms [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama_v1.1) by several percentage points. Additionally, TinyLlama-1.1B-Tele matches [TinyLlama-1.1B](https://huggingface.co/TinyLlama/TinyLlama_v1.1) across benchmarks related to common sense, language understanding, and logical reasoning. Thus, this adaptation was achieved with minimal compromise in performance on the original version.

### Context Length

The model was trained on a context length of 2048 tokens.

## Usage

TinyLlama-1.1B-Tele is a base model best suited for fine-tuning on applications related to telecommunications. It has not been fine-tuned to follow instructions and operates solely within a text completion framework. An example of this completion can be found below:

```markdown
Prompt: Shannon capacity is

Model: the capacity of a noiseless communication channel with a memoryless source. The Shannon capacity is a measure of the information rate that can be reliably transmitted over a noiseless channel.
```

The instruct version of this model can be found by following the link [TinyLlama-1.1B-Tele-it](https://huggingface.co/AliMaatouk/TinyLlama-1.1B-Tele-it). 

## Sample Code

Below we share some code snippets on how to get quickly started with running the model. First, make sure to `pip install transformers`, then copy the snippet corresponding to your hardware and adapt it to your usecase.

#### Running the model on a CPU


```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained("AliMaatouk/TinyLlama-1.1B-Tele", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained("AliMaatouk/TinyLlama-1.1B-Tele")

prompt = "Shannon capacity is"
input_ids = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**input_ids, max_new_tokens=100)

generated_tokens = outputs[0, len(input_ids['input_ids'][0]):]
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(response)
```

#### Running the model on a single / multi GPU

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("AliMaatouk/TinyLlama-1.1B-Tele", torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("AliMaatouk/TinyLlama-1.1B-Tele")

prompt = "Shannon capacity is"
input_ids = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=100)

generated_tokens = outputs[0, len(input_ids['input_ids'][0]):]
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
print(response)
```

## Citation

You can find the paper with all details about the model at https://arxiv.org/abs/2409.05314. Please cite it as follows:

```bib
@misc{maatouk2024telellmsseriesspecializedlarge,
      title={Tele-LLMs: A Series of Specialized Large Language Models for Telecommunications}, 
      author={Ali Maatouk and Kenny Chirino Ampudia and Rex Ying and Leandros Tassiulas},
      year={2024},
      eprint={2409.05314},
      archivePrefix={arXiv},
      primaryClass={cs.IT},
      url={https://arxiv.org/abs/2409.05314}, 
}
```