next / trl /core.py
BiXie's picture
Upload 204 files
252711e verified
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import warnings
from contextlib import contextmanager
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
# from transformers import top_k_top_p_filtering
from .import_utils import is_npu_available, is_xpu_available
try:
from collections.abc import Mapping
except ImportError:
from collections import Mapping
WANDB_PADDING = -1
def top_k_top_p_filtering(
logits: torch.FloatTensor,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
) -> torch.FloatTensor:
"""
Filter a distribution of logits using top-k and/or nucleus (top-p) filtering.
Args:
logits: logits distribution shape (batch size, vocabulary size)
top_k (`int`, *optional*, defaults to 0):
If > 0, only keep the top k tokens with highest probability (top-k filtering)
top_p (`float`, *optional*, defaults to 1.0):
If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
min_tokens_to_keep (`int`, *optional*, defaults to 1):
Minimumber of tokens we keep per batch example in the output.
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
logits = TopKLogitsWarper(top_k=top_k, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(None, logits)
if 0 <= top_p <= 1.0:
logits = TopPLogitsWarper(top_p=top_p, filter_value=filter_value, min_tokens_to_keep=min_tokens_to_keep)(None, logits)
return logits
def flatten_dict(nested: Dict, sep: str = "/") -> Dict:
"""Flatten dictionary and concatenate nested keys with separator."""
def recurse(nest: Dict, prefix: str, into: Dict) -> None:
for k, v in nest.items():
if sep in k:
raise ValueError(f"separator '{sep}' not allowed to be in key '{k}'")
if isinstance(v, Mapping):
recurse(v, prefix + k + sep, into)
else:
into[prefix + k] = v
flat = {}
recurse(nested, "", flat)
return flat
def convert_to_scalar(stats: Dict) -> Dict:
"""
Converts the stats from a flattened dict to single scalar dicts
"""
tensorboard_stats = {}
for k, v in stats.items():
# for tensorboard compatibility - arrays and tensors are ignored with tensorboard
# therefore we convert single element tensors to scalars
if (isinstance(v, torch.Tensor) or isinstance(v, np.ndarray)) and (len(v.shape) == 0 or (len(v.shape) == 1 and v.shape[0] == 1)):
v = v.item()
tensorboard_stats[k] = v
return tensorboard_stats
def stack_dicts(stats_dicts: List[Dict]) -> Dict:
"""Stack the values of a dict."""
results = dict()
for k in stats_dicts[0]:
stats_list = [torch.flatten(d[k]) for d in stats_dicts]
results[k] = pad_sequence(stats_list, batch_first=True, padding_value=WANDB_PADDING)
return results
def add_suffix(input_dict: Dict, suffix: str) -> Dict:
"""Add suffix to dict keys."""
return dict((k + suffix, v) for k, v in input_dict.items())
def pad_to_size(tensor: torch.Tensor, size: int, dim: int = 1, padding: int = 50256) -> torch.Tensor:
"""Pad tensor to size."""
t_size = tensor.size()[dim]
if t_size == size:
return tensor
else:
return torch.nn.functional.pad(tensor, (0, size - t_size), "constant", padding)
def logprobs_from_logits(logits: torch.Tensor, labels: torch.Tensor, gather: bool = True) -> torch.Tensor:
"""
See: https://github.com/pytorch/pytorch/issues/563#issuecomment-330103591
"""
logp = F.log_softmax(logits, dim=2)
if not gather:
return logp
logpy = torch.gather(logp, 2, labels.unsqueeze(2)).squeeze(-1)
return logpy
def whiten(values: torch.Tensor, shift_mean: bool = True) -> torch.Tensor:
"""Whiten values."""
mean, var = torch.mean(values), torch.var(values)
whitened = (values - mean) * torch.rsqrt(var + 1e-8)
if not shift_mean:
whitened += mean
return whitened
def masked_mean(values: torch.Tensor, mask: torch.Tensor, axis: bool = None) -> torch.Tensor:
"""Compute mean of tensor with a masked values."""
if axis is not None:
return (values * mask).sum(axis=axis) / mask.sum(axis=axis)
else:
return (values * mask).sum() / mask.sum()
def masked_var(values: torch.Tensor, mask: torch.Tensor, unbiased: bool = True) -> torch.Tensor:
"""Compute variance of tensor with masked values."""
mean = masked_mean(values, mask)
centered_values = values - mean
variance = masked_mean(centered_values**2, mask)
if unbiased:
mask_sum = mask.sum()
if mask_sum == 0:
raise ValueError("The sum of the mask is zero, which can happen when `mini_batch_size=1`;" "try increase the `mini_batch_size` or `gradient_accumulation_steps`")
# note that if mask_sum == 1, then there is a division by zero issue
# to avoid it you just need to use a larger minibatch_size
bessel_correction = mask_sum / (mask_sum - 1)
variance = variance * bessel_correction
return variance
def masked_whiten(values: torch.Tensor, mask: torch.Tensor, shift_mean: bool = True) -> torch.Tensor:
"""Whiten values with masked values."""
mean, var = masked_mean(values, mask), masked_var(values, mask)
whitened = (values - mean) * torch.rsqrt(var + 1e-8)
if not shift_mean:
whitened += mean
return whitened
def clip_by_value(x: torch.Tensor, tensor_min: float, tensor_max: float) -> torch.Tensor:
"""
Tensor extension to torch.clamp
https://github.com/pytorch/pytorch/issues/2793#issuecomment-428784713
"""
clipped = torch.max(torch.min(x, tensor_max), tensor_min)
return clipped
def entropy_from_logits(logits: torch.Tensor) -> torch.Tensor:
"""Calculate entropy from logits."""
pd = torch.nn.functional.softmax(logits, dim=-1)
entropy = torch.logsumexp(logits, axis=-1) - torch.sum(pd * logits, axis=-1)
return entropy
def average_torch_dicts(list_of_dicts: List[Dict]) -> Dict:
"""Average values of a list of dicts with torch tensors."""
average_dict = dict()
for key in list_of_dicts[0].keys():
average_dict[key] = torch.mean(torch.stack([d[key] for d in list_of_dicts]), axis=0)
return average_dict
def stats_to_np(stats_dict: Dict) -> Dict:
"""Cast all torch.tensors in dict to numpy arrays."""
new_dict = dict()
for k, v in stats_dict.items():
if isinstance(v, torch.Tensor):
new_dict[k] = v.detach().cpu()
if new_dict[k].dtype == torch.bfloat16:
new_dict[k] = new_dict[k].float()
new_dict[k] = new_dict[k].numpy()
else:
new_dict[k] = v
if np.isscalar(new_dict[k]):
new_dict[k] = float(new_dict[k])
return new_dict
def respond_to_batch(model: nn.Module, queries: List[torch.LongTensor], txt_len: int = 20, top_k: int = 0, top_p: float = 1.0) -> torch.LongTensor:
"""Sample text from language model."""
input_ids = queries
for i in range(txt_len):
# Get Logits
outputs = model(input_ids)
next_token_logits = outputs[0][:, -1, :]
next_token_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
# Sample
probs = F.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
input_ids = torch.cat([input_ids, next_token.unsqueeze(-1)], dim=-1)
return input_ids[:, -txt_len:]
def set_seed(seed: int) -> None:
"""
Helper function for reproducible behavior to set the seed in `random`, `numpy`, and `torch`.
Args:
seed (`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if is_xpu_available():
torch.xpu.manual_seed_all(seed)
elif is_npu_available():
torch.npu.manual_seed_all(seed)
else:
torch.cuda.manual_seed_all(seed)
class LengthSampler:
"""
Samples a length
"""
def __init__(self, min_value: int, max_value: int):
self.values = list(range(min_value, max_value))
def __call__(self) -> int:
return np.random.choice(self.values)
class PPODecorators(object):
optimize_device_cache = False
@classmethod
@contextmanager
def empty_device_cache(cls):
yield
if cls.optimize_device_cache:
if is_xpu_available():
gc.collect()
torch.xpu.empty_cache()
gc.collect()
elif is_npu_available():
gc.collect()
torch.npu.empty_cache()
gc.collect()
elif torch.cuda.is_available():
gc.collect()
torch.cuda.empty_cache()
gc.collect()
def randn_tensor(
shape: Union[Tuple, List],
generator: Optional[Union[List[torch.Generator], torch.Generator]] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
layout: Optional[torch.layout] = None,
) -> torch.Tensor:
"""A helper function to create random tensors on the desired `device` with the desired `dtype`. When
passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
is always created on the CPU.
"""
# device on which tensor is created defaults to device
rand_device = device
batch_size = shape[0]
layout = layout or torch.strided
device = device or torch.device("cpu")
if generator is not None:
gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
if gen_device_type != device.type and gen_device_type == "cpu":
rand_device = "cpu"
if device != "mps":
warnings.warn(
f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
f" slighly speed up this function by passing a generator that was created on the {device} device."
)
elif gen_device_type != device.type and gen_device_type == "cuda":
raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
# make sure generator list of length 1 is treated like a non-list
if isinstance(generator, list) and len(generator) == 1:
generator = generator[0]
if isinstance(generator, list):
shape = (1,) + shape[1:]
latents = [torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout) for i in range(batch_size)]
latents = torch.cat(latents, dim=0).to(device)
else:
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
return latents