# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: # Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import os import copy from dataclasses import dataclass, field import json import logging import pathlib from typing import Dict, Optional, Sequence, List from PIL import Image, ImageFile from packaging import version import numpy as np import time import random import yaml import math import re import torch import transformers import tokenizers import deepspeed from transformers import AutoConfig from torch.utils.data import Dataset from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_INDEX from llava.train.llava_trainer import LLaVATrainer from llava import conversation as conversation_lib from llava.model import * from llava.mm_utils import process_highres_image, process_anyres_image, process_highres_image_crop_split, tokenizer_image_token from llava.utils import rank0_print, process_video_with_pyav, process_video_with_decord torch.multiprocessing.set_sharing_strategy("file_system") ImageFile.LOAD_TRUNCATED_IMAGES = True local_rank = None IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse("0.14") @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="facebook/opt-125m") model_class_name: Optional[str] = field(default=None, metadata={"help": "Used to init model class, format is XXXXForCausalLM. e.g. currently XXXX is chosen from LlavaLlama, LlavaMixtral, LlavaMistral, Llama"}) mm_tunable_parts: Optional[str] = field( default=None, metadata={"help": 'Could be "mm_mlp_adapter", "mm_vision_resampler", "mm_vision_tower,mm_mlp_adapter,mm_language_model", "mm_vision_tower,mm_mlp_adapter,mm_language_model", "mm_mlp_adapter,mm_language_model"'} ) # deciding which part of the multimodal model to tune, will overwrite other previous settings version: Optional[str] = field(default="v0") freeze_backbone: bool = field(default=False) tune_mm_mlp_adapter: bool = field(default=False) tune_mm_vision_resampler: bool = field(default=False) vision_tower: Optional[str] = field(default=None) vision_tower_pretrained: Optional[str] = field(default=None) # default to the last layer unfreeze_mm_vision_tower: bool = field(default=False) unfreeze_language_model: bool = field(default=False) mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer pretrain_mm_mlp_adapter: Optional[str] = field(default=None) mm_projector_type: Optional[str] = field(default="linear") mm_use_im_start_end: bool = field(default=False) mm_use_im_patch_token: bool = field(default=True) mm_patch_merge_type: Optional[str] = field(default="flat") mm_vision_select_feature: Optional[str] = field(default="patch") mm_resampler_type: Optional[str] = field(default=None) mm_mask_drop_mode: str = field(default="fixed") mm_mask_drop_skip_percentage: float = field(default=0.0) mm_mask_drop_ratio: float = field(default=0.25) mm_mask_drop_ratio_upper: Optional[float] = field(default=None) mm_mask_drop_ratio_lower: Optional[float] = field(default=None) mm_spatial_pool_stride: Optional[int] = field(default=None) mm_spatial_pool_mode: str = field(default="bilinear") mm_spatial_pool_out_channels: Optional[int] = field(default=None) mm_perceiver_depth: Optional[int] = field(default=3) mm_perceiver_latents: Optional[int] = field(default=32) mm_perceiver_ff_mult: Optional[float] = field(default=4) mm_perceiver_pretrained: Optional[str] = field(default=None) mm_qformer_depth: Optional[int] = field(default=3) mm_qformer_latents: Optional[int] = field(default=32) mm_qformer_pretrained: Optional[str] = field(default=None) rope_scaling_factor: Optional[float] = field(default=None) rope_scaling_type: Optional[str] = field(default=None) s2: Optional[bool] = field(default=False) s2_scales: Optional[str] = field(default="336,672,1008") use_pos_skipping: Optional[bool] = field(default=False) pos_skipping_range: Optional[int] = field(default=4096) mm_newline_position: Optional[str] = field(default="one_token") @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data, in llava's instruction.json format. Supporting multiple json files via /path/to/{a,b,c}.json"}) lazy_preprocess: bool = False is_multimodal: bool = False early_mix_text: bool = False image_folder: Optional[str] = field(default=None) image_aspect_ratio: str = "square" image_grid_pinpoints: Optional[str] = field(default=None) image_crop_resolution: Optional[int] = field(default=None) image_split_resolution: Optional[int] = field(default=None) video_folder: Optional[str] = field(default=None) video_fps: Optional[int] = field(default=1) frames_upbound: Optional[int] = field(default=0) @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") remove_unused_columns: bool = field(default=False) freeze_mm_mlp_adapter: bool = field(default=False) freeze_mm_vision_resampler: bool = field(default=False) mpt_attn_impl: Optional[str] = field(default="triton") model_max_length: int = field( default=4096, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, ) double_quant: bool = field(default=True, metadata={"help": "Compress the quantization statistics through double quantization."}) quant_type: str = field(default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}) bits: int = field(default=16, metadata={"help": "How many bits to use."}) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" mm_projector_lr: Optional[float] = None mm_vision_tower_lr: Optional[float] = None group_by_varlen: bool = field(default=False) group_by_modality_length: bool = field(default=False) group_by_modality_length_auto: bool = field(default=False) auto_find_batch_size: bool = field(default=False) gradient_checkpointing: bool = field(default=True) verbose_logging: bool = field(default=False) attn_implementation: str = field(default="flash_attention_2", metadata={"help": "Use transformers attention implementation."}) # @dataclass # class EvaluationArguments: # eval_num_processes: int = field(default=1) # task_names: str = field(default=None) # model: str = field(default="llava") # model_args: Optional[str] = field(default=None) # num_fewshot: Optional[int] = field(default=None) # batch_size: int = field(default=1) # device: Optional[str] = field(default=None) # limit: Optional[int] = field(default=None) # check_integrity: Optional[bool] = field(default=False) # show_task_to_terminal: Optional[bool] = field(default=False) # log_samples: Optional[bool] = field(default=True) # gen_kwargs: Optional[str] = field(default="") # log_samples_suffix: Optional[str] = field(default="") # output_path: Optional[str] = field(default="./logs/") def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def find_all_linear_names(model): cls = torch.nn.Linear lora_module_names = set() multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"] for name, module in model.named_modules(): if any(mm_keyword in name for mm_keyword in multimodal_keywords): continue if isinstance(module, cls): names = name.split(".") lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if "lm_head" in lora_module_names: # needed for 16-bit lora_module_names.remove("lm_head") return list(lora_module_names) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" if hasattr(trainer.args, "tune_mm_mlp_adapter") and trainer.args.tune_mm_mlp_adapter: check_only_save_mm_adapter_tunnable = True # only has mm_mlp_adapter and mm_vision_resampler in the tuneable parts elif hasattr(trainer.args, "mm_tunable_parts") and (len(trainer.args.mm_tunable_parts.split(",")) == 1 and ("mm_mlp_adapter" in trainer.args.mm_tunable_parts or "mm_vision_resampler" in trainer.args.mm_tunable_parts)): check_only_save_mm_adapter_tunnable = True else: check_only_save_mm_adapter_tunnable = False trainer.accelerator.wait_for_everyone() torch.cuda.synchronize() rank0_print(f"Only save projectors: {check_only_save_mm_adapter_tunnable}") if check_only_save_mm_adapter_tunnable: # Only save Adapter keys_to_match = ["mm_projector", "vision_resampler"] if getattr(trainer.args, "use_im_start_end", False): keys_to_match.extend(["embed_tokens", "embed_in"]) weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) trainer.model.config.save_pretrained(output_dir) current_folder = output_dir.split("/")[-1] parent_folder = os.path.dirname(output_dir) if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: if current_folder.startswith("checkpoint-"): mm_projector_folder = os.path.join(parent_folder, "mm_projector") os.makedirs(mm_projector_folder, exist_ok=True) torch.save(weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin")) else: torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin")) return if trainer.deepspeed: trainer.save_model(output_dir) return state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] input_ids_lens = labels_lens = [tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def _mask_targets(target, tokenized_lens, speakers): # cur_idx = 0 cur_idx = tokenized_lens[0] tokenized_lens = tokenized_lens[1:] target[:cur_idx] = IGNORE_INDEX for tokenized_len, speaker in zip(tokenized_lens, speakers): if speaker == "human": target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX cur_idx += tokenized_len def _add_speaker_and_signal(header, source, get_conversation=True): """Add speaker and start/end signal on each round.""" BEGIN_SIGNAL = "### " END_SIGNAL = "\n" conversation = header for sentence in source: from_str = sentence["from"] if from_str.lower() == "human": from_str = conversation_lib.default_conversation.roles[0] elif from_str.lower() == "gpt": from_str = conversation_lib.default_conversation.roles[1] else: from_str = "unknown" sentence["value"] = BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL if get_conversation: conversation += sentence["value"] conversation += BEGIN_SIGNAL return conversation def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict: is_multimodal = data_args.is_multimodal if not is_multimodal: return sources for source in sources: for sentence in source: # TODO maybe this should be changed for interleaved data? # if DEFAULT_IMAGE_TOKEN in sentence["value"] and not sentence["value"].startswith(DEFAULT_IMAGE_TOKEN): # only check for num_im=1 num_im = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) if num_im == 1 and DEFAULT_IMAGE_TOKEN in sentence["value"] and not sentence["value"].startswith(DEFAULT_IMAGE_TOKEN): sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] sentence["value"] = sentence["value"].strip() if "mmtag" in conversation_lib.default_conversation.version: sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "" + DEFAULT_IMAGE_TOKEN + "") replace_token = DEFAULT_IMAGE_TOKEN if data_args.mm_use_im_start_end: replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) # For videoInstruct-100k noisy_data. TODO: Ask Yuanhan to clean the data instead of leaving the noise code here. sentence["value"] = sentence["value"].replace("QA_GT_caption_based_noisy", "") return sources def preprocess_llama_2(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 # Mask targets sep = "[/INST] " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)") return dict( input_ids=input_ids, labels=targets, ) def preprocess_gemma(sources: List[List[Dict[str, str]]], tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: conv: conversation_lib.Conversation = conversation_lib.default_conversation.copy() roles: Dict[str, str] = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations: List[str] = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source: List[Dict[str, str]] = source[1:] conv.messages = [] for j, sentence in enumerate(source): role: str = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids: torch.Tensor = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) else: input_ids: torch.Tensor = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets: torch.Tensor = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.GEMMA # Mask target sep: str = conv.sep + conv.roles[1] for conversation, target in zip(conversations, targets): total_len: int = int(target.ne(tokenizer.pad_token_id).sum()) rounds: List[str] = conversation.split(conv.sep) re_rounds = [] for conv_idx in range(0, len(rounds), 2): re_rounds.append(conv.sep.join(rounds[conv_idx : conv_idx + 2])) cur_len = 1 # Ignore target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(re_rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep # Re-append sep because split on this # Now "".join(parts)==rou if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) - 1 # Ignore instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 # Ignore else: round_len = len(tokenizer(rou).input_ids) - 1 # Ignore instruction_len = len(tokenizer(parts[0]).input_ids) - 1 # Ignore round_len += 2 # sep: \n takes 2 tokens target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print(f"warning: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)") return dict( input_ids=input_ids, labels=targets, ) def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: # roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} roles = {"human": "user", "gpt": "assistant"} # Add image tokens to tokenizer as a special tokens # Use a deepcopy of tokenizer so that we don't modify on the tokenizer tokenizer = copy.deepcopy(tokenizer) # When there is actually an image, we add the image tokens as a special token if has_image: tokenizer.add_tokens([""], special_tokens=True) image_token_index = tokenizer.convert_tokens_to_ids("") im_start, im_end = tokenizer.additional_special_tokens_ids # unmask_tokens = ["<|im_start|>", "<|im_start|>", "\n"] unmask_tokens_idx = [198, im_start, im_end] nl_tokens = tokenizer("\n").input_ids # Reset Qwen chat templates so that it won't include system message every time we apply chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" tokenizer.chat_template = chat_template # _system = tokenizer("system").input_ids + nl_tokens # _user = tokenizer("user").input_ids + nl_tokens # _assistant = tokenizer("assistant").input_ids + nl_tokens # Apply prompt templates input_ids, targets = [], [] for i, source in enumerate(sources): if roles[source[0]["from"]] != roles["human"]: source = source[1:] input_id, target = [], [] # New version, use apply chat template # Build system message for each sentence input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}]) target += [IGNORE_INDEX] * len(input_id) for conv in source: # Make sure llava data can load try: role = conv["role"] content = conv["content"] except: role = conv["from"] content = conv["value"] role = roles.get(role, role) conv = [{"role" : role, "content" : content}] encode_id = tokenizer.apply_chat_template(conv) input_id += encode_id if role in ["user", "system"]: target += [IGNORE_INDEX] * len(encode_id) else: target += encode_id assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}" for idx, encode_id in enumerate(input_id): if encode_id in unmask_tokens_idx: target[idx] = encode_id if encode_id == image_token_index: input_id[idx] = IMAGE_TOKEN_INDEX input_ids.append(input_id) targets.append(target) input_ids = torch.tensor(input_ids, dtype=torch.long) targets = torch.tensor(targets, dtype=torch.long) return dict( input_ids=input_ids, # tensor(bs x seq_len) labels=targets, # tensor(bs x seq_len) ) def preprocess_llama3( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.", ) -> Dict: # roles = {"human": "<|start_header_id|>user<|end_header_id|>", "gpt": "<|start_header_id|>assistant<|end_header_id|>"} roles = {"human": "user", "gpt": "assistant"} # Add image tokens to tokenizer as a special tokens # Use a deepcopy of tokenizer so that we don't modify on the tokenizer tokenizer = copy.deepcopy(tokenizer) # When there is actually an image, we add the image tokens as a special token if has_image: tokenizer.add_tokens([""], special_tokens=True) image_token_index = tokenizer.convert_tokens_to_ids("") bos_token_id = tokenizer.convert_tokens_to_ids("<|begin_of_text|>") start_header_id = tokenizer.convert_tokens_to_ids("<|start_header_id|>") end_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") eot_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") unmask_tokens = ["<|begin_of_text|>", "<|start_header_id|>", "<|end_header_id|>", "<|eot_id|>", "\n\n"] unmask_tokens_idx = [tokenizer.convert_tokens_to_ids(tok) for tok in unmask_tokens] # After update, calling tokenizer of llama3 will # auto add bos id for the tokens. ヽ(`⌒´)ノ def safe_tokenizer_llama3(text): input_ids = tokenizer(text).input_ids if input_ids[0] == bos_token_id: input_ids = input_ids[1:] return input_ids nl_tokens = tokenizer.convert_tokens_to_ids("\n\n") # Apply prompt templates input_ids, targets = [], [] for i, source in enumerate(sources): if roles[source[0]["from"]] != roles["human"]: source = source[1:] input_id, target = [], [] # New version, use apply chat template # Build system message for each sentence input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}]) target += [IGNORE_INDEX] * len(input_id) for conv in source: # Make sure llava data can load try: role = conv["role"] content = conv["content"] except: role = conv["from"] content = conv["value"] role = roles.get(role, role) conv = [{"role" : role, "content" : content}] # First is bos token we don't need here encode_id = tokenizer.apply_chat_template(conv)[1:] input_id += encode_id if role in ["user", "system"]: target += [IGNORE_INDEX] * len(encode_id) else: target += encode_id assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}" for idx, encode_id in enumerate(input_id): if encode_id in unmask_tokens_idx: target[idx] = encode_id if encode_id == image_token_index: input_id[idx] = IMAGE_TOKEN_INDEX input_ids.append(input_id) targets.append(target) input_ids = torch.tensor(input_ids, dtype=torch.long) targets = torch.tensor(targets, dtype=torch.long) return dict( input_ids=input_ids, # tensor(bs x seq_len) labels=targets, # tensor(bs x seq_len) ) def preprocess_v1(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.TWO # Mask targets sep = conv.sep + conv.roles[1] + ": " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: round_len -= 1 instruction_len -= 1 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)") return dict( input_ids=input_ids, labels=targets, ) def preprocess_mpt(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.MPT # Mask targets sep = conv.sep + conv.roles[1] for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep) re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt for conv_idx in range(3, len(rounds), 2): re_rounds.append(conv.sep.join(rounds[conv_idx : conv_idx + 2])) # user + gpt cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(re_rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 1 if i != 0 and getattr(tokenizer, "legacy", False) and IS_TOKENIZER_GREATER_THAN_0_14: round_len += 1 instruction_len += 1 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f"(#turns={len(re_rounds)} ignored)") return dict( input_ids=input_ids, labels=targets, ) def preprocess_plain( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: # add end signal and concatenate together conversations = [] for source in sources: assert len(source) == 2 assert DEFAULT_IMAGE_TOKEN in source[0]["value"] source[0]["value"] = DEFAULT_IMAGE_TOKEN conversation = source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep conversations.append(conversation) # tokenize conversations input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer)) target[:tokenized_len] = IGNORE_INDEX return dict(input_ids=input_ids, labels=targets) def preprocess(sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False) -> Dict: """ Given a list of sources, each is a conversation list. This transform: 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; 2. Concatenate conversations together; 3. Tokenize the concatenated conversation; 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. """ if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: return preprocess_plain(sources, tokenizer) if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: return preprocess_llama_2(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version.startswith("v1"): return preprocess_v1(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "mpt": return preprocess_mpt(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "qwen": return preprocess_qwen(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "gemma": return preprocess_gemma(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "llama_v3": return preprocess_llama3(sources, tokenizer, has_image=has_image) # add end signal and concatenate together conversations = [] for source in sources: header = f"{conversation_lib.default_conversation.system}\n\n" conversation = _add_speaker_and_signal(header, source) conversations.append(conversation) # tokenize conversations def get_tokenize_len(prompts): return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] if has_image: input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations] else: conversations_tokenized = _tokenize_fn(conversations, tokenizer) input_ids = conversations_tokenized["input_ids"] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): if has_image: tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) else: tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] speakers = [sentence["from"] for sentence in source] _mask_targets(target, tokenized_lens, speakers) return dict(input_ids=input_ids, labels=targets) class LazySupervisedDataset(Dataset): def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments): super(LazySupervisedDataset, self).__init__() self.tokenizer = tokenizer self.list_data_dict = [] # Handle multiple JSON files specified in the data_path if "{" in data_path and "}" in data_path: base_path, file_pattern = re.match(r"^(.*)\{(.*)\}\.json$", data_path).groups() file_names = file_pattern.split(",") rank0_print(f"Loading {file_names} from {base_path}") data_args.dataset_paths = [] for file_name in file_names: data_args.dataset_paths.append(f"{base_path}{file_name}.json") full_path = f"{base_path}{file_name}.json" rank0_print(f"Loading {full_path}") with open(full_path, "r") as file: cur_data_dict = json.load(file) rank0_print(f"Loaded {len(cur_data_dict)} samples from {full_path}") self.list_data_dict.extend(cur_data_dict) elif data_path.endswith(".yaml"): with open(data_path, "r") as file: yaml_data = yaml.safe_load(file) datasets = yaml_data.get("datasets") # file should be in the format of: # datasets: # - json_path: xxxx1.json # sampling_strategy: first:1000 # - json_path: xxxx2.json # sampling_strategy: end:3000 # - json_path: xxxx3.json # sampling_strategy: random:999 data_args.dataset_paths = [dataset.get("json_path") for dataset in datasets] for dataset in datasets: json_path = dataset.get("json_path") sampling_strategy = dataset.get("sampling_strategy", "all") sampling_number = None rank0_print(f"Loading {json_path} with {sampling_strategy} sampling strategy") if json_path.endswith(".jsonl"): cur_data_dict = [] with open(json_path, "r") as json_file: for line in json_file: cur_data_dict.append(json.loads(line.strip())) elif json_path.endswith(".json"): with open(json_path, "r") as json_file: cur_data_dict = json.load(json_file) else: raise ValueError(f"Unsupported file type: {json_path}") if ":" in sampling_strategy: sampling_strategy, sampling_number = sampling_strategy.split(":") if "%" in sampling_number: sampling_number = math.ceil(int(sampling_number.split("%")[0]) * len(cur_data_dict) / 100) else: sampling_number = int(sampling_number) # Apply the sampling strategy if sampling_strategy == "first" and sampling_number is not None: cur_data_dict = cur_data_dict[:sampling_number] elif sampling_strategy == "end" and sampling_number is not None: cur_data_dict = cur_data_dict[-sampling_number:] elif sampling_strategy == "random" and sampling_number is not None: random.shuffle(cur_data_dict) cur_data_dict = cur_data_dict[:sampling_number] rank0_print(f"Loaded {len(cur_data_dict)} samples from {json_path}") self.list_data_dict.extend(cur_data_dict) else: data_args.dataset_paths = [data_path] rank0_print(f"Loading {data_path}") with open(data_path, "r") as file: cur_data_dict = json.load(file) rank0_print(f"Loaded {len(cur_data_dict)} samples from {data_path}") self.list_data_dict.extend(cur_data_dict) rank0_print(f"Loaded {len(self.list_data_dict)} samples from {data_path}") rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.data_args = data_args def __len__(self): return len(self.list_data_dict) @property def lengths(self): length_list = [] for sample in self.list_data_dict: img_tokens = 128 if "image" in sample else 0 length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens) return length_list @property def modality_lengths(self): length_list = [] for sample in self.list_data_dict: cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"]) assert cur_len > 0, f"Conversation length is 0 for {sample}" if "image" in sample or "video" in sample or self.data_args.early_mix_text: length_list.append(cur_len) else: length_list.append(-cur_len) return length_list def process_image(self, image_file, overwrite_image_aspect_ratio=None): image_folder = self.data_args.image_folder processor = self.data_args.image_processor # print(f"\n\nInspecting the image path, folder = {image_folder}, image={image_file}\n\n") try: image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") except Exception as exn: print(f"Failed to open image {image_file}. Exception:", exn) raise exn image_size = image.size image_aspect_ratio = self.data_args.image_aspect_ratio if overwrite_image_aspect_ratio is not None: image_aspect_ratio = overwrite_image_aspect_ratio if image_aspect_ratio == "highres": image = process_highres_image(image, self.data_args.image_processor, self.data_args.image_grid_pinpoints) elif image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio: image = process_anyres_image(image, self.data_args.image_processor, self.data_args.image_grid_pinpoints) elif image_aspect_ratio == "crop_split": image = process_highres_image_crop_split(image, self.data_args) elif image_aspect_ratio == "pad": def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] else: image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] return image, image_size, "image" def __getitem__(self, i) -> Dict[str, torch.Tensor]: # TODO: define number of retries somewhere else num_base_retries = 3 num_final_retries = 300 # try the current sample first for attempt_idx in range(num_base_retries): try: sample = self._get_item(i) return sample except Exception as e: # sleep 1s in case it is a cloud disk issue print(f"[Try #{attempt_idx}] Failed to fetch sample {i}. Exception:", e) time.sleep(1) # try other samples, in case it is file corruption issue for attempt_idx in range(num_base_retries): try: next_index = min(i + 1, len(self.list_data_dict) - 1) # sample_idx = random.choice(range(len(self))) sample = self._get_item(next_index) return sample except Exception as e: # no need to sleep print(f"[Try other #{attempt_idx}] Failed to fetch sample {next_index}. Exception:", e) pass try: sample = self._get_item(i) return sample except Exception as e: raise e def _get_item(self, i) -> Dict[str, torch.Tensor]: sources = self.list_data_dict[i] if isinstance(i, int): sources = [sources] assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME if "image" in sources[0]: image_file = self.list_data_dict[i]["image"] if type(image_file) is list: image = [self.process_image(f) for f in image_file] # Handling multi images # overwrite to process with simple pad if len(image_file) > 1: image = [self.process_image(f, "pad") for f in image_file] image = [[im[0], im[1], "image"] for im in image] else: image = [self.process_image(image_file)] sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args) elif "video" in sources[0]: video_file = self.list_data_dict[i]["video"] video_folder = self.data_args.video_folder video_file = os.path.join(video_folder, video_file) suffix = video_file.split(".")[-1] if not os.path.exists(video_file): print("File {} not exist!".format(video_file)) try: if "shareVideoGPTV" in video_file: frame_files = [os.path.join(video_file, f) for f in os.listdir(video_file) if os.path.isfile(os.path.join(video_file, f))] frame_files.sort() # Ensure the frames are sorted if they are named sequentially # TODO: Hard CODE: Determine the indices for uniformly sampling 10 frames num_frames_to_sample = 10 total_frames = len(frame_files) sampled_indices = np.linspace(0, total_frames - 1, num_frames_to_sample, dtype=int) # Read and store the sampled frames video = [] for idx in sampled_indices: frame_path = frame_files[idx] try: with Image.open(frame_path) as img: frame = img.convert("RGB") video.append(frame) except IOError: print(f"Failed to read frame at path: {frame_path}") else: video = process_video_with_decord(video_file, self.data_args) processor = self.data_args.image_processor image = processor.preprocess(video, return_tensors="pt")["pixel_values"] image = [(image, video[0].size, "video")] sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]), self.data_args) except Exception as e: print(f"Error: {e}") print(f"Failed to read video file: {video_file}") return self._get_item(i + 1) else: sources = copy.deepcopy([e["conversations"] for e in sources]) has_image = ("image" in self.list_data_dict[i]) or ("video" in self.list_data_dict[i]) data_dict = preprocess(sources, self.tokenizer, has_image=has_image) if "prompt" in data_dict: prompt = data_dict["prompt"] else: prompt = None if isinstance(i, int): data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) # image exist in the data if "image" in self.list_data_dict[i]: data_dict["image"] = image elif "video" in self.list_data_dict[i]: data_dict["image"] = image elif self.data_args.is_multimodal: # image does not exist in the data, but the model is multimodal crop_size = self.data_args.image_processor.crop_size data_dict["image"] = [ (torch.zeros(1, 3, crop_size["height"], crop_size["width"]), (crop_size["width"], crop_size["height"]), "text"), ] # prompt exist in the data if prompt is not None: data_dict["prompt"] = prompt data_dict["id"] = self.list_data_dict[i].get("id", i) return data_dict @dataclass class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def pad_sequence(self, input_ids, batch_first, padding_value): if self.tokenizer.padding_side == "left": input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=batch_first, padding_value=padding_value) if self.tokenizer.padding_side == "left": input_ids = torch.flip(input_ids, [1]) return input_ids def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) # input_ids, labels, ids = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels", "id")) input_ids = [_input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids] labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels] if self.tokenizer.pad_token_id is None: # self.tokenizer.pad_token_id = self.tokenizer.eos_token_id # FIXME: this could only be triggered for llama3 model. self.tokenizer.pad_token_id = 0 # This gets the best result. Don't know why. input_ids = self.pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) batch = dict(input_ids=input_ids, labels=labels.long() if labels.dtype == torch.int32 else labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id)) # batch = dict(input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ids=ids) if "image" in instances[0]: images = [instance["image"] for instance in instances] batch["image_sizes"] = [im[1] for im_list in images for im in im_list] batch["modalities"] = [im[2] for im_list in images for im in im_list] images = [im[0] for im_list in images for im in im_list] # if all(x is not None and x.shape == images[0].shape for x in images): # Image: (N, P, C, H, W) # Video: (N, F, C, H, W) # batch["images"] = torch.stack(images) # else: batch["images"] = images if "prompt" in instances[0]: batch["prompts"] = [instance["prompt"] for instance in instances] return batch def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: """Make dataset and collator for supervised fine-tuning.""" train_dataset = LazySupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) def get_model(model_args, training_args, bnb_model_from_pretrained_args): assert training_args.attn_implementation if training_args.attn_implementation == "sdpa" and torch.__version__ < "2.1.2": raise ValueError("The 'sdpa' attention implementation requires torch version 2.1.2 or higher.") customized_kwargs = dict() customized_kwargs.update(bnb_model_from_pretrained_args) cfg_pretrained = None overwrite_config = {} if any( [ model_args.rope_scaling_factor is not None, model_args.rope_scaling_type is not None, model_args.mm_spatial_pool_stride is not None, model_args.mm_spatial_pool_out_channels is not None, model_args.mm_spatial_pool_mode is not None, model_args.mm_resampler_type is not None, ] ): cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path) if model_args.use_pos_skipping is not None and model_args.pos_skipping_range is not None: overwrite_config["use_pos_skipping"] = model_args.use_pos_skipping overwrite_config["pos_skipping_range"] = model_args.pos_skipping_range if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None: overwrite_config["rope_scaling"] = { "factor": model_args.rope_scaling_factor, "type": model_args.rope_scaling_type, } if training_args.model_max_length is None: training_args.model_max_length = cfg_pretrained.max_position_embeddings * model_args.rope_scaling_factor overwrite_config["max_sequence_length"] = training_args.model_max_length assert training_args.model_max_length == int(cfg_pretrained.max_position_embeddings * model_args.rope_scaling_factor), print( f"model_max_length: {training_args.model_max_length}, max_position_embeddings: {cfg_pretrained.max_position_embeddings}, rope_scaling_factor: {model_args.rope_scaling_factor}" ) # overwrite_config["max_sequence_length"] = model_args.max_sequence_length # overwrite_config["tokenizer_model_max_length"] = model_args.tokenizer_model_max_length if model_args.mm_spatial_pool_stride is not None and model_args.mm_spatial_pool_out_channels is not None and model_args.mm_spatial_pool_mode is not None and model_args.mm_resampler_type is not None: overwrite_config["mm_resampler_type"] = model_args.mm_resampler_type overwrite_config["mm_spatial_pool_stride"] = model_args.mm_spatial_pool_stride overwrite_config["mm_spatial_pool_out_channels"] = model_args.mm_spatial_pool_out_channels overwrite_config["mm_spatial_pool_mode"] = model_args.mm_spatial_pool_mode if model_args.mm_spatial_pool_mode is not None: overwrite_config["mm_spatial_pool_mode"] = model_args.mm_spatial_pool_mode if overwrite_config: assert cfg_pretrained is not None, "cfg_pretrained is None" rank0_print(f"Overwriting config with {overwrite_config}") for k, v in overwrite_config.items(): setattr(cfg_pretrained, k, v) customized_kwargs["config"] = cfg_pretrained if model_args.model_class_name is not None: actual_model_class_name = f"{model_args.model_class_name}ForCausalLM" model_class = getattr(transformers, actual_model_class_name) rank0_print(f"Using model class {model_class} from {model_args.model_class_name}") model = model_class.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) elif model_args.vision_tower is not None: if "mixtral" in model_args.model_name_or_path.lower(): model = LlavaMixtralForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) elif "mistral" in model_args.model_name_or_path.lower() or "zephyr" in model_args.model_name_or_path.lower(): model = LlavaMistralForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) elif ( "wizardlm-2" in model_args.model_name_or_path.lower() or "vicuna" in model_args.model_name_or_path.lower() or "llama" in model_args.model_name_or_path.lower() or "yi" in model_args.model_name_or_path.lower() or "nous-hermes" in model_args.model_name_or_path.lower() and "wizard-2" in model_args.model_name_or_path.lower() ): model = LlavaLlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) elif "qwen" in model_args.model_name_or_path.lower(): if "moe" in model_args.model_name_or_path.lower() or "A14B" in model_args.model_name_or_path: model = LlavaQwenMoeForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock deepspeed.utils.set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) else: model = LlavaQwenForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) elif "gemma" in model_args.model_name_or_path.lower(): model = LlavaGemmaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) else: raise ValueError(f"Unknown model class {model_args}") else: model = transformers.LlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation=training_args.attn_implementation, torch_dtype=(torch.bfloat16 if training_args.bf16 else None), low_cpu_mem_usage=False, **customized_kwargs, ) return model def train(attn_implementation=None): global local_rank parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if training_args.verbose_logging: rank0_print(f"Inspecting experiment hyperparameters:\n") rank0_print(f"model_args = {vars(model_args)}\n\n") rank0_print(f"data_args = {vars(data_args)}\n\n") rank0_print(f"training_args = {vars(training_args)}\n\n") # rank0_print(f"evaluation_args = {vars(evaluation_args)}\n\n") local_rank = training_args.local_rank compute_dtype = torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) bnb_model_from_pretrained_args = {} if training_args.bits in [4, 8]: from transformers import BitsAndBytesConfig bnb_model_from_pretrained_args.update( dict( device_map={"": training_args.device}, load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, quantization_config=BitsAndBytesConfig( load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=training_args.double_quant, bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'} ), ) ) model = get_model(model_args, training_args, bnb_model_from_pretrained_args) model.config.use_cache = False if model_args.rope_scaling_factor is not None and model_args.rope_scaling_type is not None: model.config.rope_scaling = { "factor": model_args.rope_scaling_factor, "type": model_args.rope_scaling_type, } if model_args.freeze_backbone: model.model.requires_grad_(False) if training_args.bits in [4, 8]: from peft import prepare_model_for_kbit_training model.config.torch_dtype = torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32) model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) if training_args.gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) if training_args.lora_enable: from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=training_args.lora_r, lora_alpha=training_args.lora_alpha, target_modules=find_all_linear_names(model), lora_dropout=training_args.lora_dropout, bias=training_args.lora_bias, task_type="CAUSAL_LM", ) if training_args.bits == 16: if training_args.bf16: model.to(torch.bfloat16) if training_args.fp16: model.to(torch.float16) rank0_print("Adding LoRA adapters...") model = get_peft_model(model, lora_config) if "mistral" in model_args.model_name_or_path.lower() or "mixtral" in model_args.model_name_or_path.lower() or "zephyr" in model_args.model_name_or_path.lower(): tokenizer = transformers.AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="left") elif "qwen" in model_args.model_name_or_path.lower(): tokenizer = transformers.AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right") elif ( "wizardlm-2" in model_args.model_name_or_path.lower() or "vicuna" in model_args.model_name_or_path.lower() or "llama" in model_args.model_name_or_path.lower() or "yi" in model_args.model_name_or_path.lower() or "nous-hermes" in model_args.model_name_or_path.lower() and "wizard-2" in model_args.model_name_or_path.lower() ): tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, ) rank0_print(f"Prompt version: {model_args.version}") if model_args.version == "v0": if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token="[PAD]"), tokenizer=tokenizer, model=model, ) elif model_args.version == "v0.5": tokenizer.pad_token = tokenizer.unk_token else: if tokenizer.unk_token is not None: tokenizer.pad_token = tokenizer.unk_token if model_args.version in conversation_lib.conv_templates: conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] else: conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] if model_args.vision_tower is not None: model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp) vision_tower = model.get_vision_tower() vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) data_args.image_processor = vision_tower.image_processor data_args.is_multimodal = True model.config.image_aspect_ratio = data_args.image_aspect_ratio if data_args.image_grid_pinpoints is not None: if isinstance(data_args.image_grid_pinpoints, str) and "x" in data_args.image_grid_pinpoints: try: patch_size = data_args.image_processor.size[0] except Exception as e: patch_size = data_args.image_processor.size["shortest_edge"] assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" # Use regex to extract the range from the input string matches = re.findall(r"\((\d+)x(\d+)\)", data_args.image_grid_pinpoints) range_start = tuple(map(int, matches[0])) range_end = tuple(map(int, matches[-1])) # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] # Multiply all elements by patch_size data_args.image_grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] elif isinstance(data_args.image_grid_pinpoints, str): data_args.image_grid_pinpoints = ast.literal_eval(data_args.image_grid_pinpoints) model.config.image_grid_pinpoints = data_args.image_grid_pinpoints model.config.image_crop_resolution = data_args.image_crop_resolution model.config.image_split_resolution = data_args.image_split_resolution model.config.tokenizer_padding_side = tokenizer.padding_side model.config.tokenizer_model_max_length = tokenizer.model_max_length model.config.mm_newline_position = model_args.mm_newline_position ### Deciding train which part of the model if model_args.mm_tunable_parts is None: # traditional way of deciding which part to train model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter model.config.tune_mm_vision_resampler = training_args.tune_mm_vision_resampler = model_args.tune_mm_vision_resampler if model_args.tune_mm_mlp_adapter or model_args.tune_mm_vision_resampler: model.requires_grad_(False) if model_args.tune_mm_mlp_adapter: for p in model.get_model().mm_projector.parameters(): p.requires_grad = True if model_args.tune_mm_vision_resampler: for p in model.get_model().vision_resampler.parameters(): p.requires_grad = True model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter if training_args.freeze_mm_mlp_adapter: for p in model.get_model().mm_projector.parameters(): p.requires_grad = False model.config.freeze_mm_vision_resampler = training_args.freeze_mm_vision_resampler if training_args.freeze_mm_vision_resampler: for p in model.get_model().vision_resampler.parameters(): p.requires_grad = False model.config.unfreeze_mm_vision_tower = model_args.unfreeze_mm_vision_tower if model_args.unfreeze_mm_vision_tower: vision_tower.requires_grad_(True) else: vision_tower.requires_grad_(False) else: rank0_print(f"Using mm_tunable_parts: {model_args.mm_tunable_parts}") model.config.mm_tunable_parts = training_args.mm_tunable_parts = model_args.mm_tunable_parts # Set the entire model to not require gradients by default model.requires_grad_(False) vision_tower.requires_grad_(False) model.get_model().mm_projector.requires_grad_(False) model.get_model().vision_resampler.requires_grad_(False) # Parse the mm_tunable_parts to decide which parts to unfreeze tunable_parts = model_args.mm_tunable_parts.split(",") if "mm_mlp_adapter" in tunable_parts: for p in model.get_model().mm_projector.parameters(): p.requires_grad = True if "mm_vision_resampler" in tunable_parts: for p in model.get_model().vision_resampler.parameters(): p.requires_grad = True if "mm_vision_tower" in tunable_parts: for name, param in model.named_parameters(): if "vision_tower" in name: param.requires_grad_(True) if "mm_language_model" in tunable_parts: for name, param in model.named_parameters(): if "vision_tower" not in name and "mm_projector" not in name and "vision_resampler" not in name: param.requires_grad_(True) total_params = sum(p.ds_numel if hasattr(p, "ds_numel") else p.numel() for p in model.parameters()) trainable_params = sum(p.ds_numel if hasattr(p, "ds_numel") else p.numel() for p in model.parameters() if p.requires_grad) rank0_print(f"Total parameters: ~{total_params/1e6:.2f} MB)") rank0_print(f"Trainable parameters: ~{trainable_params/1e6:.2f} MB)") if training_args.bits in [4, 8]: model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end model.config.mm_projector_lr = training_args.mm_projector_lr model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr training_args.use_im_start_end = model_args.mm_use_im_start_end model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) if training_args.bits in [4, 8]: from peft.tuners.lora import LoraLayer for name, module in model.named_modules(): if isinstance(module, LoraLayer): if training_args.bf16: module = module.to(torch.bfloat16) if "norm" in name: module = module.to(torch.float32) if "lm_head" in name or "embed_tokens" in name: if hasattr(module, "weight"): if training_args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) trainer = LLaVATrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): trainer.train(resume_from_checkpoint=True) else: trainer.train() trainer.save_state() model.config.use_cache = True if training_args.lora_enable: state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias) non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters()) if training_args.local_rank == 0 or training_args.local_rank == -1: if hasattr(model, "config"): model.config.save_pretrained(training_args.output_dir) if hasattr(model, "generation_config"): model.generation_config.save_pretrained(training_args.output_dir) model.save_pretrained(training_args.output_dir, state_dict=state_dict) torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, "non_lora_trainables.bin")) else: safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) rank0_print(f"Model saved to {training_args.output_dir}") if __name__ == "__main__": train()