import random import numpy as np import os import pandas as pd import cv2 import warnings from sklearn.model_selection import KFold import tensorflow as tf from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay import matplotlib.pyplot as plt from sklearn.metrics import precision_score, recall_score, f1_score, classification_report # Ensure h5py is installed import h5py # Set the random seed for numpy, tensorflow, and python built-in random module np.random.seed(42) tf.random.set_seed(42) random.seed(42) warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*") # Define data paths train_real_folder = 'datasets/training_set/real/' train_fake_folder = 'datasets/training_set/fake/' test_real_folder = 'datasets/test_set/real/' test_fake_folder = 'datasets/test_set/fake/' # Load train image paths and labels train_image_paths = [] train_labels = [] # Load train_real image paths and labels for filename in os.listdir(train_real_folder): image_path = os.path.join(train_real_folder, filename) label = 0 # Real images have label 0 train_image_paths.append(image_path) train_labels.append(label) # Load train_fake image paths and labels for filename in os.listdir(train_fake_folder): image_path = os.path.join(train_fake_folder, filename) label = 1 # Fake images have label 1 train_image_paths.append(image_path) train_labels.append(label) # Load test image paths and labels test_image_paths = [] test_labels = [] # Load test_real image paths and labels for filename in os.listdir(test_real_folder): image_path = os.path.join(test_real_folder, filename) label = 0 # Assuming test real images are all real (label 0) test_image_paths.append(image_path) test_labels.append(label) # Load test_fake image paths and labels for filename in os.listdir(test_fake_folder): image_path = os.path.join(test_fake_folder, filename) label = 1 # Assuming test fake images are all fake (label 1) test_image_paths.append(image_path) test_labels.append(label) # Create DataFrames train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels}) test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels}) # Function to preprocess images def preprocess_image(image_path): """Loads, resizes, and normalizes an image.""" image = cv2.imread(image_path) resized_image = cv2.resize(image, (224, 224)) # Target size defined here normalized_image = resized_image.astype(np.float32) / 255.0 return normalized_image # Preprocess all images and convert labels to numpy arrays X = np.array([preprocess_image(path) for path in train_image_paths]) Y = np.array(train_labels) # Define ResNet50 model resnet_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) # Freeze all layers except the last one for layer in resnet_model.layers[:-1]: layer.trainable = False # Modify final layer x = resnet_model.output x = tf.keras.layers.Flatten()(x) predictions = tf.keras.layers.Dense(1, activation='sigmoid')(x) # Binary classification # Create new model with modified top new_model = tf.keras.models.Model(inputs=resnet_model.input, outputs=predictions) # Compile the new model new_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # Set parameters for cross-validation kf = KFold(n_splits=4, shuffle=True, random_state=42) batch_size = 32 epochs = 5 weights_file = 'model_2.weights.h5' # Lists to store accuracy and loss for each fold accuracy_per_fold = [] loss_per_fold = [] # Perform K-Fold Cross-Validation for train_index, val_index in kf.split(X): X_train, X_val = X[train_index], X[val_index] Y_train, Y_val = Y[train_index], Y[val_index] # Load weights if they exist if os.path.exists(weights_file): new_model.load_weights(weights_file) print(f"Loaded weights from {weights_file}") # Train only the last layer history = new_model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=(X_val, Y_val)) # Save weights after training new_model.save_weights(weights_file) print(f"Saved weights to {weights_file}") # Evaluate the model on the validation data val_loss, val_accuracy = new_model.evaluate(X_val, Y_val) # Store the accuracy score for this fold accuracy_per_fold.append(val_accuracy) loss_per_fold.append(val_loss) print(f'Fold accuracy: {val_accuracy*100:.2f}%') print(f'Fold loss: {val_loss:.4f}') # Print average accuracy and loss across all folds print(f'\nAverage accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%') print(f'Average loss across all folds: {np.mean(loss_per_fold):.4f}') # Evaluate the preprocessed test images using the final model test_loss, test_accuracy = new_model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels)) print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}") # Predict labels for the test set predictions = new_model.predict(np.array([preprocess_image(path) for path in test_image_paths])) predicted_labels = (predictions > 0.5).astype(int).flatten() # Summarize the classification results true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0)) true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1)) true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1)) true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0)) print("\nClassification Summary:") print(f"Real images correctly classified: {true_real_correct}") print(f"Real images incorrectly classified: {true_real_incorrect}") print(f"Fake images correctly classified: {true_fake_correct}") print(f"Fake images incorrectly classified: {true_fake_incorrect}") # Print detailed classification report print("\nClassification Report:") print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake'])) # Plot confusion matrix cm = confusion_matrix(test_labels, predicted_labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake']) disp.plot(cmap=plt.cm.Blues) plt.title("Confusion Matrix") plt.show() # Plot training & validation accuracy values plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1)) # Plot training & validation loss values plt.subplot(1, 2, 2) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1)) plt.tight_layout() plt.show() # Plot validation accuracy and loss per fold plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o') plt.title('Validation Accuracy per Fold') plt.xlabel('Fold') plt.ylabel('Accuracy') plt.subplot(1, 2, 2) plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o') plt.title('Validation Loss per Fold') plt.xlabel('Fold') plt.ylabel('Loss') plt.tight_layout() plt.show()