# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Callable, Dict, List, Optional, Union import PIL.Image import torch from transformers import ( CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, ) from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.models.autoencoders import AutoencoderKL from diffusers.models.transformers import SD3Transformer2DModel from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers.utils import ( is_torch_xla_available, logging, replace_example_docstring, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import AutoPipelineForImage2Image >>> from diffusers.utils import load_image >>> device = "cuda" >>> model_id_or_path = "stabilityai/stable-diffusion-3-medium-diffusers" >>> pipe = AutoPipelineForImage2Image.from_pretrained(model_id_or_path, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" >>> init_image = load_image(url).resize((512, 512)) >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k" >>> images = pipe(prompt=prompt, image=init_image, strength=0.95, guidance_scale=7.5).images[0] ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents def retrieve_latents( encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" ): if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": return encoder_output.latent_dist.sample(generator) elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": return encoder_output.latent_dist.mode() elif hasattr(encoder_output, "latents"): return encoder_output.latents else: raise AttributeError("Could not access latents of provided encoder_output") # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class StableDiffusion3InpaintPipeline(DiffusionPipeline): r""" Args: transformer ([`SD3Transformer2DModel`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size` as its dimension. text_encoder_2 ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) variant. text_encoder_3 ([`T5EncoderModel`]): Frozen text-encoder. Stable Diffusion 3 uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`CLIPTokenizer`): Second Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_3 (`T5TokenizerFast`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). """ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] def __init__( self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels ) self.mask_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, vae_latent_channels=self.vae.config.latent_channels, do_normalize=False, do_binarize=True, do_convert_grayscale=True ) self.tokenizer_max_length = self.tokenizer.model_max_length self.default_sample_size = self.transformer.config.sample_size # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 256, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if self.text_encoder_3 is None: return torch.zeros( ( batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim, ), device=device, dtype=dtype, ) text_inputs = self.tokenizer_3( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0] dtype = self.text_encoder_3.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, clip_skip: Optional[int] = None, clip_model_index: int = 0, ): device = device or self._execution_device clip_tokenizers = [self.tokenizer, self.tokenizer_2] clip_text_encoders = [self.text_encoder, self.text_encoder_2] tokenizer = clip_tokenizers[clip_model_index] text_encoder = clip_text_encoders[clip_model_index] prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) pooled_prompt_embeds = prompt_embeds[0] if clip_skip is None: prompt_embeds = prompt_embeds.hidden_states[-2] else: prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds, pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, clip_skip: Optional[int] = None, max_sequence_length: int = 256, ): r""" Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 prompt_3 = prompt_3 or prompt prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3 prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0, ) prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1, ) clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) t5_prompt_embed = self._get_t5_prompt_embeds( prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) clip_prompt_embeds = torch.nn.functional.pad( clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) ) prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt negative_prompt_3 = negative_prompt_3 or negative_prompt # normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) negative_prompt_3 = ( batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 ) if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds( negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0, ) negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds( negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1, ) negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) t5_negative_prompt_embed = self._get_t5_prompt_embeds( prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) negative_clip_prompt_embeds = torch.nn.functional.pad( negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]), ) negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) negative_pooled_prompt_embeds = torch.cat( [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1 ) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds def check_inputs( self, prompt, prompt_2, prompt_3, strength, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_3 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)): raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_3 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(num_inference_steps * strength, num_inference_steps) t_start = int(max(num_inference_steps - init_timestep, 0)) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == self.vae.config.latent_channels: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(image), generator=generator) init_latents = (init_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape init_latents_orig = init_latents noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.scale_noise(init_latents, timestep, noise) latents = init_latents.to(device=device, dtype=dtype) return latents, init_latents_orig, noise def prepare_mask_latents( self, mask, masked_image, batch_size, num_images_per_prompt, height, width, dtype, device, generator ): # resize the mask to latents shape as we concatenate the mask to the latents # we do that before converting to dtype to avoid breaking in case we're using cpu_offload # and half precision mask = torch.nn.functional.interpolate( mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) ) mask = mask.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt masked_image = masked_image.to(device=device, dtype=dtype) if masked_image.shape[1] == 4: masked_image_latents = masked_image else: masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator) # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method if mask.shape[0] < batch_size: if not batch_size % mask.shape[0] == 0: raise ValueError( "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" " of masks that you pass is divisible by the total requested batch size." ) mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) if masked_image_latents.shape[0] < batch_size: if not batch_size % masked_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) # mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask # masked_image_latents = ( # torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents # ) # aligning device to prevent device errors when concating it with the latent model input masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) return mask, masked_image_latents @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_3: Optional[Union[str, List[str]]] = None, height: int = None, width: int = None, image: PipelineImageInput = None, mask_image: PipelineImageInput = None, masked_image_latents: PipelineImageInput = None, strength: float = 0.6, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.0, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, add_predicted_noise: Optional[bool] = False, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is will be used instead height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used instead negative_prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used instead num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. add_predicted_noise (`bool`, *optional*, defaults to True): Use predicted noise instead of random noise when constructing noisy versions of the original image in the reverse diffusion process generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, prompt_3, strength, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) # 3. Preprocess image image = self.image_processor.preprocess(image, height, width) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_inference_steps) # 5. Prepare latent variables if latents is None: latents, init_latents_orig, noise = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) # 5.1. Prepare masked latent variables mask_condition = self.mask_processor.preprocess(mask_image, height, width) if masked_image_latents is None: masked_image = image * (mask_condition < 0.5) else: masked_image = masked_image_latents mask, masked_image_latents = self.prepare_mask_latents( mask_condition, masked_image, batch_size, num_images_per_prompt, height, width, prompt_embeds.dtype, device, generator ) # 6. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) if add_predicted_noise: init_latents_proper = self.scheduler.scale_noise( init_latents_orig, torch.tensor([t]), noise_pred_uncond ) else: init_latents_proper = self.scheduler.scale_noise(init_latents_orig, torch.tensor([t]), noise) latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() latents = (init_latents_orig * mask) + (latents * (1 - mask)) if output_type == "latent": image = latents else: latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusion3PipelineOutput(images=image)