--- license: apache-2.0 datasets: - Novora/CodeClassifier_v1 pipeline_tag: text-classification --- # Introduction Novora Code Classifier v1 Tiny, is a tiny `Text Classification` model, which classifies given code text input under 1 of `31` different classes (programming languages). This model is designed to be able to run on CPU, but optimally runs on GPUs. # Info - 1 of 31 classes output - 512 token input dimension - 64 hidden dimensions - 2 linear layers - The `snowflake-arctic-embed-xs` model is used as the embeddings model. - Dataset split into 80% training set, 20% testing set. - The combined test and training data is around 1000 chunks per programming language, the data is 31,100 chunks (entries) as 512 tokens per chunk, being a snippet of the code. - Picked from the 18th epoch out of 20 done. # Architecture The `CodeClassifier-v1-Tiny` model employs a neural network architecture optimized for text classification tasks, specifically for classifying programming languages from code snippets. This model includes: - **Bidirectional LSTM Feature Extractor**: This bidirectional LSTM layer processes input embeddings, effectively capturing contextual relationships in both forward and reverse directions within the code snippets. - **Fully Connected Layers**: The network includes two linear layers. The first projects the pooled features into a hidden feature space, and the second linear layer maps these to the output classes, which correspond to different programming languages. A dropout layer with a rate of 0.5 between these layers helps mitigate overfitting. The model's bidirectional nature and architectural components make it adept at understanding the syntax and structure crucial for code classification. # Testing/Training Datasets I have put here the samples entered into the training/testing pipeline, its a very small amount. | Language | Testing Count | Training Count | |--------------|---------------|----------------| | Ada | 20 | 80 | | Assembly | 20 | 80 | | C | 20 | 80 | | C# | 20 | 80 | | C++ | 20 | 80 | | COBOL | 14 | 55 | | Common Lisp | 20 | 80 | | Dart | 20 | 80 | | Erlang | 20 | 80 | | F# | 20 | 80 | | Go | 20 | 80 | | Haskell | 20 | 80 | | Java | 20 | 80 | | JavaScript | 20 | 80 | | Julia | 20 | 80 | | Kotlin | 20 | 80 | | Lua | 20 | 80 | | MATLAB | 20 | 80 | | PHP | 20 | 80 | | Perl | 20 | 80 | | Prolog | 1 | 4 | | Python | 20 | 80 | | R | 20 | 80 | | Ruby | 20 | 80 | | Rust | 20 | 80 | | SQL | 20 | 80 | | Scala | 20 | 80 | | Swift | 20 | 80 | | TypeScript | 20 | 80 | # Example Code ```python import torch.nn as nn import torch.nn.functional as F class CodeClassifier(nn.Module): def __init__(self, num_classes, embedding_dim, hidden_dim, num_layers, bidirectional=False): super(CodeClassifier, self).__init__() self.feature_extractor = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True, bidirectional=bidirectional) self.dropout = nn.Dropout(0.5) # Reintroduce dropout self.fc1 = nn.Linear(hidden_dim * (2 if bidirectional else 1), hidden_dim) # Intermediate layer self.fc2 = nn.Linear(hidden_dim, num_classes) # Output layer def forward(self, x): x = x.unsqueeze(1) # Add sequence dimension x, _ = self.feature_extractor(x) x = x.squeeze(1) # Remove sequence dimension x = self.fc1(x) x = self.dropout(x) # Apply dropout x = self.fc2(x) return x import torch from transformers import AutoTokenizer, AutoModel from pathlib import Path def infer(text, model_path, embedding_model_name): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load tokenizer and embedding model tokenizer = AutoTokenizer.from_pretrained(embedding_model_name) embedding_model = AutoModel.from_pretrained(embedding_model_name).to(device) embedding_model.eval() # Prepare inputs inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to(device) for k, v in inputs.items()} # Generate embeddings with torch.no_grad(): embeddings = embedding_model(**inputs)[0][:, 0] # Load classifier model model = CodeClassifier(num_classes=31, embedding_dim=embeddings.size(-1), hidden_dim=64, num_layers=2, bidirectional=True) model.load_state_dict(torch.load(model_path, map_location=device)) model = model.to(device) model.eval() # Predict class with torch.no_grad(): output = model(embeddings) _, predicted = torch.max(output, dim=1) # Language labels languages = [ 'Ada', 'Assembly', 'C', 'C#', 'C++', 'COBOL', 'Common Lisp', 'Dart', 'Erlang', 'F#', 'Fortran', 'Go', 'Haskell', 'Java', 'JavaScript', 'Julia', 'Kotlin', 'Lua', 'MATLAB', 'Objective-C', 'PHP', 'Perl', 'Prolog', 'Python', 'R', 'Ruby', 'Rust', 'SQL', 'Scala', 'Swift', 'TypeScript' ] return languages[predicted.item()] # Example usage if __name__ == "__main__": example_text = "print('Hello, world!')" # Replace with actual text for inference model_file_path = Path("./model.safetensors") predicted_language = infer(example_text, model_file_path, "Snowflake/snowflake-arctic-embed-xs") print(f"Predicted programming language: {predicted_language}") ```