File size: 17,883 Bytes
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d6318
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d6318
 
11cdb73
 
21d6318
 
11cdb73
21d6318
11cdb73
 
 
 
 
21d6318
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d6318
11cdb73
 
 
 
28e743a
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e743a
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e743a
11cdb73
 
21d6318
 
11cdb73
21d6318
 
11cdb73
21d6318
 
 
 
11cdb73
28e743a
11cdb73
 
 
21d6318
11cdb73
 
 
 
 
 
d09a78d
11cdb73
 
d09a78d
11cdb73
 
d09a78d
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09a78d
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d6318
11cdb73
 
21d6318
 
11cdb73
d09a78d
 
 
21d6318
d09a78d
 
21d6318
11cdb73
d09a78d
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d6318
11cdb73
 
 
 
d09a78d
11cdb73
 
 
d09a78d
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09a78d
11cdb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d6318
11cdb73
 
21d6318
 
11cdb73
d09a78d
 
 
21d6318
d09a78d
 
21d6318
11cdb73
d09a78d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from transformers.models.electra.modeling_electra import ElectraPreTrainedModel, ElectraEncoder, ElectraLayer, \
    ModelOutput, ElectraForSequenceClassification, SequenceClassifierOutput, ElectraForTokenClassification, \
    ElectraForMultipleChoice
from .config import CharmenElectraConfig
from .gbst import GBST
import torch.nn as nn
import copy
import torch
from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import OrderedDict as OrderDictType
from collections import OrderedDict
from transformers.activations import get_activation


@dataclass
class CharmenElectraModelOutput(ModelOutput):
    """
    Output type of :class:`~.CharmenElectraModel`.
    """
    downsampled_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    upsampled_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


class CharmenElectraModel(ElectraPreTrainedModel):
    config_class = CharmenElectraConfig

    def __init__(self, config: CharmenElectraConfig, compatibility_with_transformers=False, **kwargs):
        super().__init__(config)
        self.embeddings: GBST = GBST(
            num_tokens=config.vocab_size,
            # number of tokens, should be 256 for byte encoding (+ 1 special token for padding in this example)
            dim=config.embedding_size,  # dimension of token and intra-block positional embedding
            max_block_size=config.max_block_size,  # maximum block size
            downsample_factor=config.downsampling_factor,
            # the final downsample factor by which the sequence length will decrease by
            score_consensus_attn=config.score_consensus_attn,
            config=config
            # whether to do the cheap score consensus (aka attention) as in eq. 5 in the paper
        )
        self.compatibility_with_transformers = compatibility_with_transformers

        if config.embedding_size != config.hidden_size:
            self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)

        self.upsampling = nn.Upsample(scale_factor=config.downsampling_factor, mode='nearest')
        self.upsampling_convolution = nn.Conv1d(in_channels=config.hidden_size * 2,
                                                out_channels=config.hidden_size,
                                                kernel_size=(config.downsampling_factor*2-1,),
                                                padding='same',
                                                dilation=(1,))
        self.upsample_output = config.upsample_output

        # config.num_hidden_layers = config.num_hidden_layers - 2

        cfg = copy.deepcopy(config)
        cfg.num_hidden_layers = config.num_hidden_layers - 2
        self.encoder = ElectraEncoder(cfg)

        # frame_hidden_size
        self.encoder_first_layer = ElectraLayer(config)
        self.encoder_last_layer = ElectraLayer(config)

        self.config = config
        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids.shape.__len__() == 1:
            input_ids = input_ids.view(1, -1)
            attention_mask = attention_mask.view(1, -1)
            token_type_ids = token_type_ids.view(1, -1)

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        batch_size, seq_length = input_shape
        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            if hasattr(self.embeddings, "token_type_ids"):
                buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
                buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
                token_type_ids = buffered_token_type_ids_expanded
            else:
                token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        unscaled_attention_mask = torch.clone(attention_mask)

        _, _, unscaled_hidden_states = self.embeddings(
            input_ids=input_ids, attention_mask=attention_mask,
            position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )

        if hasattr(self, "embeddings_project"):
            unscaled_hidden_states = self.embeddings_project(unscaled_hidden_states)

        extended_unscaled_attention_mask = self.get_extended_attention_mask(unscaled_attention_mask, input_shape,
                                                                            device)
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        unscaled_hidden_states = self.encoder_first_layer(unscaled_hidden_states, extended_unscaled_attention_mask,
                                                          None, None, None, None, False)[0]

        hidden_states, attention_mask = self.embeddings.down_sample(unscaled_hidden_states, unscaled_attention_mask,
                                                                    self.config.downsampling_factor)
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)

        encoder_output = self.encoder(
            hidden_states,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        downsampled_hidden_states = encoder_output[0]
        hidden_states = encoder_output[0]

        # upsampling
        upsampled = self.upsampling(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
        hidden_states = torch.cat([unscaled_hidden_states, upsampled], dim=-1)
        # padded_hidden_states = F.pad(hidden_states.permute(0, 2, 1), (3, 3))
        hidden_states = self.upsampling_convolution(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)

        hidden_states = self.encoder_last_layer(hidden_states, extended_unscaled_attention_mask,
                                                None, None, None, None, False)

        upsampled_output = hidden_states[0]

        return CharmenElectraModelOutput(
            downsampled_hidden_states=downsampled_hidden_states,
            upsampled_hidden_states=upsampled_output
        )

    def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
        model = OrderedDict()
        prefix = "discriminator.electra."

        for key, value in state_dict.items():
            if key.startswith('generator'):
                continue
            if key.startswith(prefix):
                model[key[len(prefix):]] = value
            else:
                continue

        super(CharmenElectraModel, self).load_state_dict(state_dict=model, strict=strict)


class CharmenElectraClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config: CharmenElectraConfig, **kwargs):
        super().__init__()
        self.config = config
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
        self.ds_factor = config.downsampling_factor

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = get_activation(self.config.summary_activation)(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x


class CharmenElectraForSequenceClassification(ElectraForSequenceClassification):
    config_class = CharmenElectraConfig

    def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0, **kwargs):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.config = config
        self.electra = CharmenElectraModel(config, compatibility_with_transformers=True)
        self.classifier = CharmenElectraClassificationHead(config)
        self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)

        self.init_weights()

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):
        output_discriminator: CharmenElectraModelOutput = self.electra(input_ids, attention_mask, token_type_ids)

        if self.carmen_config.upsample_output:
            cls = self.classifier(output_discriminator.upsampled_hidden_states)
        else:
            cls = self.classifier(output_discriminator.downsampled_hidden_states)
        cls_loss = self.cls_loss_fct(cls, labels)

        return SequenceClassifierOutput(
            loss=cls_loss,
            logits=cls,
            hidden_states=output_discriminator.downsampled_hidden_states,
            attentions=None,
        )

    def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
        model = OrderedDict()
        prefix = "discriminator."

        for key, value in state_dict.items():
            if key.startswith('generator'):
                continue
            if key.startswith(prefix):
                if 'discriminator_predictions' in key:
                    continue
                model[key[len(prefix):]] = value
            else:
                if key.startswith('sop'):
                    continue
                model[key] = value

        super(CharmenElectraForSequenceClassification, self).load_state_dict(state_dict=model, strict=False)


class CharmenElectraForTokenClassification(ElectraForTokenClassification):
    def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0, **kwargs):
        super().__init__(config)

        self.num_labels = config.num_labels
        self.config = config

        self.carmen_config = config
        self.electra = CharmenElectraModel(config, compatibility_with_transformers=True)

        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)

        self.init_weights()

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):
        output_discriminator: CharmenElectraModelOutput = self.electra(
            input_ids, attention_mask, token_type_ids)

        discriminator_sequence_output = self.dropout(output_discriminator.upsampled_hidden_states)
        logits = self.classifier(discriminator_sequence_output)

        if labels is not None:
            cls_loss = self.cls_loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
        else:
            cls_loss = None

        return SequenceClassifierOutput(
            loss=cls_loss,
            logits=logits,
            hidden_states=output_discriminator.upsampled_hidden_states,
            attentions=None,
        )

    def get_input_embeddings(self) -> nn.Module:
        return self.electra.get_input_embeddings()

    def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
        model = OrderedDict()
        prefix = "discriminator."

        for key, value in state_dict.items():
            if key.startswith('generator'):
                continue
            if key.startswith(prefix):
                if 'discriminator_predictions' in key:
                    continue
                model[key[len(prefix):]] = value
            else:
                if key.startswith('sop'):
                    continue
                model[key] = value

        super(CharmenElectraForTokenClassification, self).load_state_dict(state_dict=model, strict=False)


class Pooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class CharmenElectraForMultipleChoice(ElectraForMultipleChoice):
    def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0, **kwargs):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.carmen_config = config
        self.electra = CharmenElectraModel(config, compatibility_with_transformers=True)
        self.pooler = Pooler(config)

        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)

        self.init_weights()

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
            labels=None,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None

        output_discriminator: CharmenElectraModelOutput = self.electra(
            input_ids, attention_mask, token_type_ids)

        if self.carmen_config.upsample_output:
            pooled_output = self.pooler(output_discriminator.upsampled_hidden_states)
        else:
            pooled_output = self.pooler(output_discriminator.downsampled_hidden_states)
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        cls_loss = self.cls_loss_fct(reshaped_logits, labels)

        return SequenceClassifierOutput(
            loss=cls_loss,
            logits=reshaped_logits,
            hidden_states=output_discriminator.downsampled_hidden_states,
            attentions=None,
        )

    def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
        model = OrderedDict()
        prefix = "discriminator."

        for key, value in state_dict.items():
            if key.startswith('generator'):
                continue
            if key.startswith(prefix):
                if 'discriminator_predictions' in key:
                    continue
                model[key[len(prefix):]] = value
            else:
                if key.startswith('sop'):
                    continue
                model[key] = value

        super(CharmenElectraForMultipleChoice, self).load_state_dict(state_dict=model, strict=False)