charmen-electra / modeling_charmen.py
Tamás Ficsor
add model
d09a78d
raw
history blame
No virus
17.9 kB
from transformers.models.electra.modeling_electra import ElectraPreTrainedModel, ElectraEncoder, ElectraLayer, \
ModelOutput, ElectraForSequenceClassification, SequenceClassifierOutput, ElectraForTokenClassification, \
ElectraForMultipleChoice
from .config import CharmenElectraConfig
from .gbst import GBST
import torch.nn as nn
import copy
import torch
from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import OrderedDict as OrderDictType
from collections import OrderedDict
from transformers.activations import get_activation
@dataclass
class CharmenElectraModelOutput(ModelOutput):
"""
Output type of :class:`~.CharmenElectraModel`.
"""
downsampled_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
upsampled_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class CharmenElectraModel(ElectraPreTrainedModel):
config_class = CharmenElectraConfig
def __init__(self, config: CharmenElectraConfig, compatibility_with_transformers=False, **kwargs):
super().__init__(config)
self.embeddings: GBST = GBST(
num_tokens=config.vocab_size,
# number of tokens, should be 256 for byte encoding (+ 1 special token for padding in this example)
dim=config.embedding_size, # dimension of token and intra-block positional embedding
max_block_size=config.max_block_size, # maximum block size
downsample_factor=config.downsampling_factor,
# the final downsample factor by which the sequence length will decrease by
score_consensus_attn=config.score_consensus_attn,
config=config
# whether to do the cheap score consensus (aka attention) as in eq. 5 in the paper
)
self.compatibility_with_transformers = compatibility_with_transformers
if config.embedding_size != config.hidden_size:
self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size)
self.upsampling = nn.Upsample(scale_factor=config.downsampling_factor, mode='nearest')
self.upsampling_convolution = nn.Conv1d(in_channels=config.hidden_size * 2,
out_channels=config.hidden_size,
kernel_size=(config.downsampling_factor*2-1,),
padding='same',
dilation=(1,))
self.upsample_output = config.upsample_output
# config.num_hidden_layers = config.num_hidden_layers - 2
cfg = copy.deepcopy(config)
cfg.num_hidden_layers = config.num_hidden_layers - 2
self.encoder = ElectraEncoder(cfg)
# frame_hidden_size
self.encoder_first_layer = ElectraLayer(config)
self.encoder_last_layer = ElectraLayer(config)
self.config = config
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids.shape.__len__() == 1:
input_ids = input_ids.view(1, -1)
attention_mask = attention_mask.view(1, -1)
token_type_ids = token_type_ids.view(1, -1)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
unscaled_attention_mask = torch.clone(attention_mask)
_, _, unscaled_hidden_states = self.embeddings(
input_ids=input_ids, attention_mask=attention_mask,
position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
if hasattr(self, "embeddings_project"):
unscaled_hidden_states = self.embeddings_project(unscaled_hidden_states)
extended_unscaled_attention_mask = self.get_extended_attention_mask(unscaled_attention_mask, input_shape,
device)
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
unscaled_hidden_states = self.encoder_first_layer(unscaled_hidden_states, extended_unscaled_attention_mask,
None, None, None, None, False)[0]
hidden_states, attention_mask = self.embeddings.down_sample(unscaled_hidden_states, unscaled_attention_mask,
self.config.downsampling_factor)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device)
encoder_output = self.encoder(
hidden_states,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
downsampled_hidden_states = encoder_output[0]
hidden_states = encoder_output[0]
# upsampling
upsampled = self.upsampling(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
hidden_states = torch.cat([unscaled_hidden_states, upsampled], dim=-1)
# padded_hidden_states = F.pad(hidden_states.permute(0, 2, 1), (3, 3))
hidden_states = self.upsampling_convolution(hidden_states.permute(0, 2, 1)).permute(0, 2, 1)
hidden_states = self.encoder_last_layer(hidden_states, extended_unscaled_attention_mask,
None, None, None, None, False)
upsampled_output = hidden_states[0]
return CharmenElectraModelOutput(
downsampled_hidden_states=downsampled_hidden_states,
upsampled_hidden_states=upsampled_output
)
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
model = OrderedDict()
prefix = "discriminator.electra."
for key, value in state_dict.items():
if key.startswith('generator'):
continue
if key.startswith(prefix):
model[key[len(prefix):]] = value
else:
continue
super(CharmenElectraModel, self).load_state_dict(state_dict=model, strict=strict)
class CharmenElectraClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: CharmenElectraConfig, **kwargs):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
self.ds_factor = config.downsampling_factor
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = get_activation(self.config.summary_activation)(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class CharmenElectraForSequenceClassification(ElectraForSequenceClassification):
config_class = CharmenElectraConfig
def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0, **kwargs):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.electra = CharmenElectraModel(config, compatibility_with_transformers=True)
self.classifier = CharmenElectraClassificationHead(config)
self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_discriminator: CharmenElectraModelOutput = self.electra(input_ids, attention_mask, token_type_ids)
if self.carmen_config.upsample_output:
cls = self.classifier(output_discriminator.upsampled_hidden_states)
else:
cls = self.classifier(output_discriminator.downsampled_hidden_states)
cls_loss = self.cls_loss_fct(cls, labels)
return SequenceClassifierOutput(
loss=cls_loss,
logits=cls,
hidden_states=output_discriminator.downsampled_hidden_states,
attentions=None,
)
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
model = OrderedDict()
prefix = "discriminator."
for key, value in state_dict.items():
if key.startswith('generator'):
continue
if key.startswith(prefix):
if 'discriminator_predictions' in key:
continue
model[key[len(prefix):]] = value
else:
if key.startswith('sop'):
continue
model[key] = value
super(CharmenElectraForSequenceClassification, self).load_state_dict(state_dict=model, strict=False)
class CharmenElectraForTokenClassification(ElectraForTokenClassification):
def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0, **kwargs):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.carmen_config = config
self.electra = CharmenElectraModel(config, compatibility_with_transformers=True)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_discriminator: CharmenElectraModelOutput = self.electra(
input_ids, attention_mask, token_type_ids)
discriminator_sequence_output = self.dropout(output_discriminator.upsampled_hidden_states)
logits = self.classifier(discriminator_sequence_output)
if labels is not None:
cls_loss = self.cls_loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
else:
cls_loss = None
return SequenceClassifierOutput(
loss=cls_loss,
logits=logits,
hidden_states=output_discriminator.upsampled_hidden_states,
attentions=None,
)
def get_input_embeddings(self) -> nn.Module:
return self.electra.get_input_embeddings()
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
model = OrderedDict()
prefix = "discriminator."
for key, value in state_dict.items():
if key.startswith('generator'):
continue
if key.startswith(prefix):
if 'discriminator_predictions' in key:
continue
model[key[len(prefix):]] = value
else:
if key.startswith('sop'):
continue
model[key] = value
super(CharmenElectraForTokenClassification, self).load_state_dict(state_dict=model, strict=False)
class Pooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class CharmenElectraForMultipleChoice(ElectraForMultipleChoice):
def __init__(self, config: CharmenElectraConfig, class_weight=None, label_smoothing=0.0, **kwargs):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.carmen_config = config
self.electra = CharmenElectraModel(config, compatibility_with_transformers=True)
self.pooler = Pooler(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, 1)
self.cls_loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight, label_smoothing=label_smoothing)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
output_discriminator: CharmenElectraModelOutput = self.electra(
input_ids, attention_mask, token_type_ids)
if self.carmen_config.upsample_output:
pooled_output = self.pooler(output_discriminator.upsampled_hidden_states)
else:
pooled_output = self.pooler(output_discriminator.downsampled_hidden_states)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
cls_loss = self.cls_loss_fct(reshaped_logits, labels)
return SequenceClassifierOutput(
loss=cls_loss,
logits=reshaped_logits,
hidden_states=output_discriminator.downsampled_hidden_states,
attentions=None,
)
def load_state_dict(self, state_dict: OrderDictType[str, Tensor], strict: bool = True):
model = OrderedDict()
prefix = "discriminator."
for key, value in state_dict.items():
if key.startswith('generator'):
continue
if key.startswith(prefix):
if 'discriminator_predictions' in key:
continue
model[key[len(prefix):]] = value
else:
if key.startswith('sop'):
continue
model[key] = value
super(CharmenElectraForMultipleChoice, self).load_state_dict(state_dict=model, strict=False)