# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import diffusers from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention import JointTransformerBlock from diffusers.models.attention_processor import Attention, AttentionProcessor from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.models.controlnet import BaseOutput, zero_module from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput from torch.nn import functional as F logger = logging.get_logger(__name__) # pylint: disable=invalid-name from packaging import version class ControlNetConditioningEmbedding(nn.Module): """ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full model) to encode image-space conditions ... into feature maps ..." """ def __init__( self, conditioning_embedding_channels: int, conditioning_channels: int = 3, block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), ): super().__init__() self.conv_in = nn.Conv2d( conditioning_channels, block_out_channels[0], kernel_size=3, padding=1 ) self.blocks = nn.ModuleList([]) for i in range(len(block_out_channels) - 1): channel_in = block_out_channels[i] channel_out = block_out_channels[i + 1] self.blocks.append( nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1) ) self.blocks.append( nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2) ) self.conv_out = zero_module( nn.Conv2d( block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1, ) ) def forward(self, conditioning): embedding = self.conv_in(conditioning) embedding = F.silu(embedding) for block in self.blocks: embedding = block(embedding) embedding = F.silu(embedding) embedding = self.conv_out(embedding) return embedding @dataclass class SD3ControlNetOutput(BaseOutput): controlnet_block_samples: Tuple[torch.Tensor] class SD3ControlNetModel( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin ): _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 18, attention_head_dim: int = 64, num_attention_heads: int = 18, joint_attention_dim: int = 4096, caption_projection_dim: int = 1152, pooled_projection_dim: int = 2048, out_channels: int = 16, pos_embed_max_size: int = 96, conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = ( 16, 32, 96, 256, ), conditioning_channels: int = 3, ): """ conditioning_channels: condition image pixel space channels conditioning_embedding_out_channels: intermediate channels """ super().__init__() default_out_channels = in_channels self.out_channels = ( out_channels if out_channels is not None else default_out_channels ) self.inner_dim = num_attention_heads * attention_head_dim self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, # hard-code for now. ) self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim ) self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim) # control net conditioning embedding # self.controlnet_cond_embedding = ControlNetConditioningEmbedding( # conditioning_embedding_channels=default_out_channels, # block_out_channels=conditioning_embedding_out_channels, # conditioning_channels=conditioning_channels, # ) # `attention_head_dim` is doubled to account for the mixing. # It needs to crafted when we get the actual checkpoints. self.transformer_blocks = nn.ModuleList( [ JointTransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim if version.parse(diffusers.__version__) >= version.parse('0.30.0.dev0') else self.inner_dim, context_pre_only=False, ) for _ in range(num_layers) ] ) # controlnet_blocks self.controlnet_blocks = nn.ModuleList([]) for _ in range(len(self.transformer_blocks)): controlnet_block = zero_module(nn.Linear(self.inner_dim, self.inner_dim)) self.controlnet_blocks.append(controlnet_block) # control condition embedding pos_embed_cond = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels + 1, embed_dim=self.inner_dim, pos_embed_type=None, ) # pos_embed_cond = nn.Linear(in_channels + 1, self.inner_dim) self.pos_embed_cond = zero_module(pos_embed_cond) self.gradient_checkpointing = False # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking( self, chunk_size: Optional[int] = None, dim: int = 0 ) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward( module: torch.nn.Module, chunk_size: int, dim: int ): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor( return_deprecated_lora=True ) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor( self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError( "`fuse_qkv_projections()` is not supported for models having added KV projections." ) self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @classmethod def from_transformer( cls, transformer, num_layers=None, load_weights_from_transformer=True ): config = transformer.config config["num_layers"] = num_layers or config.num_layers controlnet = cls(**config) if load_weights_from_transformer: controlnet.pos_embed.load_state_dict( transformer.pos_embed.state_dict(), strict=False ) controlnet.time_text_embed.load_state_dict( transformer.time_text_embed.state_dict(), strict=False ) controlnet.context_embedder.load_state_dict( transformer.context_embedder.state_dict(), strict=False ) controlnet.transformer_blocks.load_state_dict( transformer.transformer_blocks.state_dict(), strict=False ) return controlnet def forward( self, hidden_states: torch.FloatTensor, controlnet_cond: torch.Tensor, conditioning_scale: float = 1.0, encoder_hidden_states: torch.FloatTensor = None, pooled_projections: torch.FloatTensor = None, timestep: torch.LongTensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`SD3Transformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. controlnet_cond (`torch.Tensor`): The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. conditioning_scale (`float`, defaults to `1.0`): The scale factor for ControlNet outputs. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if ( joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None ): logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed( hidden_states ) # takes care of adding positional embeddings too. b,c,H,W -> b, N, C temb = self.time_text_embed(timestep, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) # add condition hidden_states = hidden_states + self.pos_embed_cond(controlnet_cond) block_res_samples = () for block in self.transformer_blocks: if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, ) block_res_samples = block_res_samples + (hidden_states,) controlnet_block_res_samples = () for block_res_sample, controlnet_block in zip( block_res_samples, self.controlnet_blocks ): block_res_sample = controlnet_block(block_res_sample) controlnet_block_res_samples = controlnet_block_res_samples + ( block_res_sample, ) # 6. scaling controlnet_block_res_samples = [ sample * conditioning_scale for sample in controlnet_block_res_samples ] if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (controlnet_block_res_samples,) return SD3ControlNetOutput( controlnet_block_samples=controlnet_block_res_samples ) def invert_copy_paste(self, controlnet_block_samples): controlnet_block_samples = controlnet_block_samples + controlnet_block_samples[::-1] return controlnet_block_samples class SD3MultiControlNetModel(ModelMixin): r""" `SD3ControlNetModel` wrapper class for Multi-SD3ControlNet This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be compatible with `SD3ControlNetModel`. Args: controlnets (`List[SD3ControlNetModel]`): Provides additional conditioning to the unet during the denoising process. You must set multiple `SD3ControlNetModel` as a list. """ def __init__(self, controlnets): super().__init__() self.nets = nn.ModuleList(controlnets) def forward( self, hidden_states: torch.FloatTensor, controlnet_cond: List[torch.tensor], conditioning_scale: List[float], pooled_projections: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, timestep: torch.LongTensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[SD3ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate( zip(controlnet_cond, conditioning_scale, self.nets) ): block_samples = controlnet( hidden_states=hidden_states, timestep=timestep, encoder_hidden_states=encoder_hidden_states, pooled_projections=pooled_projections, controlnet_cond=image, conditioning_scale=scale, joint_attention_kwargs=joint_attention_kwargs, return_dict=return_dict, ) # merge samples if i == 0: control_block_samples = block_samples else: control_block_samples = [ control_block_sample + block_sample for control_block_sample, block_sample in zip( control_block_samples[0], block_samples[0] ) ] control_block_samples = (tuple(control_block_samples),) return control_block_samples