File size: 15,351 Bytes
1e0b940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57e96c5
1e0b940
 
 
 
57e96c5
1e0b940
 
 
 
 
 
 
 
57e96c5
1e0b940
 
 
 
 
 
 
 
 
57e96c5
1e0b940
 
57e96c5
1e0b940
 
 
 
 
57e96c5
 
 
 
1e0b940
57e96c5
1e0b940
 
57e96c5
1e0b940
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f807544a050>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f807544a0e0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f807544a170>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f807544a200>",
        "_build": "<function ActorCriticPolicy._build at 0x7f807544a290>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f807544a320>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f807544a3b0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f807544a440>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f807544a4d0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f807544a560>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f807544a5f0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f8075485d80>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 32,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1652222088.297484,
    "learning_rate": 0.0005,
    "tensorboard_log": "logs",
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADN+dr0Wv2U9qHnXPfTAK77ECpE8P2ifPQAAAAAAAAAA4M9tPlsk+bwCEGu6aW0DOZZZW753n5o5AACAPwAAgD8zZcC84eCRuorPLbE+K1IxNi7GuizDDK8AAIA/AACAP5o73T36gz4+vkkvvuCKp773aq29sT+JvAAAAAAAAAAA2jSGPUi1g7ruKSSzT2MML6CFMLtyT9QzAACAPwAAgD/g8T4+AuK4PquiHL7+Ucu+dOqBvQmzlrwAAAAAAAAAAADCfDxYLdg9rQtrvcPiWr5oIXG9DdZ9PAAAAAAAAAAAZqnCPBSAkLrzbKgykERcMAriXznlv3GzAACAPwAAgD8zO/C7zcuJPqNfAj6vT0G+6j4ePfKrRrwAAAAAAAAAAJqjDT3X4wG7JacrvRJjOb6tiCq8iuypPgAAgD8AAAAAzQ3APPwbeT2Ntk+9Wyslvv7RoTxuVYe9AAAAAAAAAABm9+m8w+1Eulu37DKQrT0weaGHu1oRsbMAAIA/AACAP5q+sTwsWgI/swNgPfFtpL7LXQI8QKKzuwAAAAAAAAAAZhD4PMKN1z7DR4I8ZGG8vj7PLTwwqik8AAAAAAAAAADrRJO+9uaoP8cxGL/diSW/9Mewvj5eRr4AAAAAAAAAAGZEM7zQUrY/nqpYvuCaiD0nT9g7rmYHvAAAAAAAAAAAU6xqPuRiJr1ot/s7IZqlui5Lkb7GaXO7AACAPwAAgD9mVh87y3uuPyOiZz2BQQa/1EqRt4b/J7wAAAAAAAAAAA3viT3hgJG6j98Ts25B5jEAKK66zu6OMwAAgD8AAIA/wOWTveDPiD7yqJQ9R7aOvqzhR7wymbe6AAAAAAAAAABmNQ6+sD+SP4vhCr8wjCm/uEtjvl9kn74AAAAAAAAAADPkS704LNO7a7C2O0aCADvLuC89qJ/1uwAAgD8AAIA/MzvQvaytBD9uIoM8IPenviiYYL0w4lY9AAAAAAAAAAAzqnI9ey6xuroImjPu2Omu+GU9uk59x7MAAIA/AACAP5p8EL2UUMg72L7SPJ7gZb7wGZG91oljvQAAAAAAAAAAgLhAvU1yBT865jY8ojOovhbAi7zKTSC9AAAAAAAAAABaIEK+QSqBPgWt9j3Zxom+J9MBvR3uIz0AAAAAAAAAAIC0cr0NQI8/a9xNvnM3DL9OFsG9QM8bvgAAAAAAAAAARrEFvjEf+T4eVZ09JESyvtU4Sb0qq349AAAAAAAAAAAzX/m87eggPx5NlDxbW4++3AvYvLDeCz0AAAAAAAAAAM0co71v2zE+iMZrPjOkWr7fH7Y9/kNwvQAAAAAAAAAAwA+6PZh+1j664QW+LE2vvmDfwbwH5J29AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVSxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVB1yM9wYTECUhpRSlIwBbJRLt4wBdJRHQJB0kCfYjB51fZQoaAZoCWgPQwjye5v+7D9MQJSGlFKUaBVLt2gWR0CQdLaTwDvFdX2UKGgGaAloD0MI2VpfJLRbckCUhpRSlGgVTSIBaBZHQJB0wm3OObR1fZQoaAZoCWgPQwhXQQx07U9xQJSGlFKUaBVL3GgWR0CQdUhY/3WXdX2UKGgGaAloD0MIEarU7EFwckCUhpRSlGgVS/loFkdAkHVxJ7LMcXV9lChoBmgJaA9DCF8mipB6LnNAlIaUUpRoFU0AAWgWR0CQdaKBNEgGdX2UKGgGaAloD0MInPpA8s4tckCUhpRSlGgVS+BoFkdAkHZHmJWNm3V9lChoBmgJaA9DCEYldQKaWnJAlIaUUpRoFU0VAWgWR0CQdq29L6DXdX2UKGgGaAloD0MIWipvR7j8cECUhpRSlGgVS/xoFkdAkHglndweeXV9lChoBmgJaA9DCOPiqNxELG9AlIaUUpRoFUv8aBZHQJB5ga/ATIx1fZQoaAZoCWgPQwjRdHYyuNNxQJSGlFKUaBVNAAFoFkdAkHm+ruIAO3V9lChoBmgJaA9DCLk5lQxA0HJAlIaUUpRoFUvuaBZHQJB5vpGFzuF1fZQoaAZoCWgPQwjlDMUdb7lxQJSGlFKUaBVNHgFoFkdAkHm/D1oQF3V9lChoBmgJaA9DCA7ZQLpY3nJAlIaUUpRoFUv/aBZHQJB6BLL6k691fZQoaAZoCWgPQwit30xM14BxQJSGlFKUaBVNAwFoFkdAkHpa4MF2V3V9lChoBmgJaA9DCJLoZRRLv3BAlIaUUpRoFUv8aBZHQJB7FLPD50t1fZQoaAZoCWgPQwjFqkGYmxJwQJSGlFKUaBVL+mgWR0CQe6mbLEDRdX2UKGgGaAloD0MIC5dV2AwTc0CUhpRSlGgVTZsBaBZHQJB8QuRLbpN1fZQoaAZoCWgPQwgA5IQJo7NwQJSGlFKUaBVNCAFoFkdAkH4MPJ7swHV9lChoBmgJaA9DCDcbKzEPc3BAlIaUUpRoFU0LAWgWR0CQfjp5NXYEdX2UKGgGaAloD0MI9nzNclmIcUCUhpRSlGgVS/VoFkdAkH8BKHwgDHV9lChoBmgJaA9DCMuisIsi62xAlIaUUpRoFUv0aBZHQJB/L0XgtOF1fZQoaAZoCWgPQwgl6C/0yMJxQJSGlFKUaBVNDwFoFkdAkH888PnSv3V9lChoBmgJaA9DCC7KbJDJcG9AlIaUUpRoFUvoaBZHQJCABgVoHs11fZQoaAZoCWgPQwh23sZmR89xQJSGlFKUaBVNDgFoFkdAkIDONDMNdHV9lChoBmgJaA9DCDQw8rImuHBAlIaUUpRoFU0CAWgWR0CQgQJSR8txdX2UKGgGaAloD0MITE9Y4oEWbkCUhpRSlGgVTQoBaBZHQJCBEzImw7l1fZQoaAZoCWgPQwg6P8VxYEdxQJSGlFKUaBVNEQFoFkdAkIE8fRu0kXV9lChoBmgJaA9DCM6JPbTPWHBAlIaUUpRoFUv7aBZHQJCCbS/j81p1fZQoaAZoCWgPQwibdjHNNAxyQJSGlFKUaBVNAwFoFkdAkINhoM8YAXV9lChoBmgJaA9DCPhSeNDsu3JAlIaUUpRoFU0UAWgWR0CQg6lPacqfdX2UKGgGaAloD0MIWhKgppagb0CUhpRSlGgVS/xoFkdAkIPbPt2LYXV9lChoBmgJaA9DCFxxcVRuMm5AlIaUUpRoFU0OAWgWR0CQg/2eg+QmdX2UKGgGaAloD0MIescpOtK/cECUhpRSlGgVTQsBaBZHQJCD/grH2h91fZQoaAZoCWgPQwiOyk3U0rlvQJSGlFKUaBVNJAFoFkdAkIQuvt+kQHV9lChoBmgJaA9DCP1mYrrQgnBAlIaUUpRoFU0LAWgWR0CQhI1HOKO1dX2UKGgGaAloD0MIyRzLu+qPSECUhpRSlGgVS8BoFkdAkIS3UhFEzHV9lChoBmgJaA9DCCWQErv2tHFAlIaUUpRoFUv5aBZHQJCFDXd0q6R1fZQoaAZoCWgPQwi0ci8wK2BuQJSGlFKUaBVNCwFoFkdAkIWW/8EV33V9lChoBmgJaA9DCJAy4gIQXHJAlIaUUpRoFUvfaBZHQJCGsK6WgOB1fZQoaAZoCWgPQwjkht9Nt0hgQJSGlFKUaBVN6ANoFkdAkIdaFRHf/HV9lChoBmgJaA9DCPM4DOYvnHBAlIaUUpRoFUvuaBZHQJCHlBTn7pF1fZQoaAZoCWgPQwgb1elA1uRwQJSGlFKUaBVL5GgWR0CQm6Dye7L/dX2UKGgGaAloD0MIngyOkpcbcUCUhpRSlGgVS/doFkdAkJwDO1OTJXV9lChoBmgJaA9DCC2VtyOcRkNAlIaUUpRoFUvUaBZHQJCcHZi/fwZ1fZQoaAZoCWgPQwjZQ/tYgUxzQJSGlFKUaBVNGwFoFkdAkJxqIN3GGXV9lChoBmgJaA9DCBCVRszsoW9AlIaUUpRoFU0SAWgWR0CQnYQFcIJJdX2UKGgGaAloD0MI170ViYl8bECUhpRSlGgVTQQBaBZHQJCd3TSb6P91fZQoaAZoCWgPQwhtc2N6QtpwQJSGlFKUaBVL42gWR0CQnu6ZH/cWdX2UKGgGaAloD0MIV3vYC0Uoc0CUhpRSlGgVS+BoFkdAkJ/EZvUBn3V9lChoBmgJaA9DCLOxEvMseXJAlIaUUpRoFU0eAWgWR0CQoFuZTho/dX2UKGgGaAloD0MId0gxQOIrcUCUhpRSlGgVS/xoFkdAkKBq6vq1PXV9lChoBmgJaA9DCHnMQGX8aXFAlIaUUpRoFUv6aBZHQJCg/yWiUPh1fZQoaAZoCWgPQwgtXiwM0cpxQJSGlFKUaBVL6GgWR0CQoaO1OTJRdX2UKGgGaAloD0MIQS0GD5NzcECUhpRSlGgVS/hoFkdAkKLKaTfR/nV9lChoBmgJaA9DCMu6fywEJnFAlIaUUpRoFU0aAWgWR0CQowBhhH9WdX2UKGgGaAloD0MITgzJycTFbkCUhpRSlGgVS+FoFkdAkKOJP2wmmnV9lChoBmgJaA9DCNGVCFT/AnBAlIaUUpRoFUvXaBZHQJCkIh6jWTZ1fZQoaAZoCWgPQwi6Lvzg/PduQJSGlFKUaBVNEQFoFkdAkKRGphnanXV9lChoBmgJaA9DCJkuxOoPXXBAlIaUUpRoFUvZaBZHQJCkd6Rhc7h1fZQoaAZoCWgPQwjs2t5uiXByQJSGlFKUaBVL7WgWR0CQpJ59Vmz0dX2UKGgGaAloD0MIp1t2iH8EbkCUhpRSlGgVS+poFkdAkKSe/UONHnV9lChoBmgJaA9DCFEzpIriE3BAlIaUUpRoFU0DAWgWR0CQpNfHxSYPdX2UKGgGaAloD0MIhj3t8JeycUCUhpRSlGgVS/ZoFkdAkKWQvlEJB3V9lChoBmgJaA9DCAfwFkhQbnJAlIaUUpRoFU0IAWgWR0CQpmq8lHBldX2UKGgGaAloD0MI/mDguXd8cUCUhpRSlGgVTQ0BaBZHQJCmsBhhH9Z1fZQoaAZoCWgPQwgJjWDjeo9xQJSGlFKUaBVL7GgWR0CQqCbDdgv2dX2UKGgGaAloD0MIY2LzcW0cb0CUhpRSlGgVS/NoFkdAkKjGvW6K+HV9lChoBmgJaA9DCCB/aVGfsm9AlIaUUpRoFUv0aBZHQJCo5d/rjYJ1fZQoaAZoCWgPQwia6zTSEtVwQJSGlFKUaBVL9WgWR0CQqWW69TP0dX2UKGgGaAloD0MIPC8VG7NycECUhpRSlGgVS+xoFkdAkKlk8FINE3V9lChoBmgJaA9DCEz9vKnIR3FAlIaUUpRoFU0rAWgWR0CQqXPWxyGSdX2UKGgGaAloD0MIwRn8/SKGckCUhpRSlGgVTSIBaBZHQJCpgM5OrQx1fZQoaAZoCWgPQwhmSYCaWs1zQJSGlFKUaBVNcgFoFkdAkKn5hvze43V9lChoBmgJaA9DCMTOFDpvtnJAlIaUUpRoFU0ZAWgWR0CQqgOwPiDNdX2UKGgGaAloD0MIigJ9Io+tcECUhpRSlGgVTQsBaBZHQJCqqp5u63B1fZQoaAZoCWgPQwheLXdmwopwQJSGlFKUaBVNBQFoFkdAkKxcenyd4HV9lChoBmgJaA9DCLDHREoza3NAlIaUUpRoFU0VAWgWR0CQrNV4oqkNdX2UKGgGaAloD0MIPDPBcK67cECUhpRSlGgVS+1oFkdAkK0OmWMS9XV9lChoBmgJaA9DCDM334huhnFAlIaUUpRoFU0DAWgWR0CQrWObiIcjdX2UKGgGaAloD0MIbM1WXjKFcUCUhpRSlGgVS/JoFkdAkK34UBXCCXV9lChoBmgJaA9DCAKgihu3oEtAlIaUUpRoFUu3aBZHQJCuqFxn3+N1fZQoaAZoCWgPQwjK/nkacD1yQJSGlFKUaBVL7GgWR0CQrt06YE4edX2UKGgGaAloD0MIRgiPNg62bUCUhpRSlGgVTQUBaBZHQJCu8HTqjah1fZQoaAZoCWgPQwiWCb/UD1dxQJSGlFKUaBVL52gWR0CQr6+hGpdbdX2UKGgGaAloD0MIAcCxZw/XcECUhpRSlGgVS9ZoFkdAkLANic5Ke3V9lChoBmgJaA9DCABWR4607nFAlIaUUpRoFU0XAWgWR0CQsIK4hEBsdX2UKGgGaAloD0MIX10VqEX7bkCUhpRSlGgVS/loFkdAkLDRX4j8k3V9lChoBmgJaA9DCJ0v9l78znFAlIaUUpRoFUvuaBZHQJCxMPoV2zR1fZQoaAZoCWgPQwgfEr73N95xQJSGlFKUaBVL32gWR0CQsa9B8hLXdX2UKGgGaAloD0MIeF+VC5VuckCUhpRSlGgVS/NoFkdAkLG+UY8+zXV9lChoBmgJaA9DCDygbMqVQnJAlIaUUpRoFUvcaBZHQJCyTJfYzzp1fZQoaAZoCWgPQwhtjJ3wUnFxQJSGlFKUaBVNEwFoFkdAkLKr8iwB53V9lChoBmgJaA9DCNS7eD9uoG9AlIaUUpRoFU0HAWgWR0CQst6t1ZDBdX2UKGgGaAloD0MInwH1ZhRpcUCUhpRSlGgVTQMBaBZHQJCy4An2Iwd1fZQoaAZoCWgPQwhmahK84chxQJSGlFKUaBVL62gWR0CQtMXF98Z2dX2UKGgGaAloD0MIEM08uaYSb0CUhpRSlGgVS+poFkdAkLYbHEMspXV9lChoBmgJaA9DCPwXCALksnFAlIaUUpRoFU0cAWgWR0CQthn1WbPQdX2UKGgGaAloD0MIVFVoIBYLcUCUhpRSlGgVS/1oFkdAkLclEiMYM3V9lChoBmgJaA9DCAFolC49y3JAlIaUUpRoFU0KAWgWR0CQtzTyJ9ApdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 248,
    "n_steps": 512,
    "gamma": 0.992,
    "gae_lambda": 0.985,
    "ent_coef": 0.01,
    "vf_coef": 0.65,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}