File size: 7,691 Bytes
b310f83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from functools import partial
from datetime import datetime, timedelta
from pathlib import Path
import pickle

import dask
import dask.array as da
import cartopy
import cartopy.crs as ccrs
import xarray as xr
import xarray.ufuncs as xu
import matplotlib.pyplot as plt

from model.afnonet import AFNONet   # download the model code from https://github.com/HFAiLab/FourCastNet/blob/master/model/afnonet.py

DATANAMES = ['10m_u_component_of_wind', '10m_v_component_of_wind', '2m_temperature',
             'geopotential@1000', 'geopotential@50', 'geopotential@500', 'geopotential@850',
             'mean_sea_level_pressure', 'relative_humidity@500', 'relative_humidity@850',
             'surface_pressure', 'temperature@500', 'temperature@850', 'total_column_water_vapour',
             'u_component_of_wind@1000', 'u_component_of_wind@500', 'u_component_of_wind@850',
             'v_component_of_wind@1000', 'v_component_of_wind@500', 'v_component_of_wind@850',
             'total_precipitation']
DATAMAP = {
    'geopotential': 'z',
    'relative_humidity': 'r',
    'temperature': 't',
    'u_component_of_wind': 'u',
    'v_component_of_wind': 'v'
}


def load_model():
    # input size
    h, w = 720, 1440
    x_c, y_c, p_c = 20, 20, 1

    backbone_model = AFNONet(img_size=[h, w], in_chans=x_c, out_chans=y_c, norm_layer=partial(nn.LayerNorm, eps=1e-6))
    ckpt = torch.load('./backbone.pt', map_location="cpu")
    backbone_model.load_state_dict(ckpt['model'])

    precip_model = AFNONet(img_size=[h, w], in_chans=x_c, out_chans=p_c, norm_layer=partial(nn.LayerNorm, eps=1e-6))
    ckpt = torch.load('./precipitation.pt', map_location="cpu")
    precip_model.load_state_dict(ckpt['model'])


def imcol(data, img_path, img_name, **kwargs):
    fig = plt.figure(figsize=(20, 10))
    ax = plt.axes(projection=ccrs.PlateCarree())

    I = data.plot(ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False, add_labels=False, rasterized=True, **kwargs)
    ax.coastlines(resolution='110m')

    dirname = f'{img_path.absolute()}/{img_name}.jpg'

    plt.axis('off')
    plt.savefig(dirname, bbox_inches='tight', pad_inches=0.)
    plt.close(fig)


def plot(real_data, pred_data, save_path):
    cmap_t = 'RdYlBu_r'

    wind = xu.sqrt(real_data['u10'] ** 2 + real_data['v10'] ** 2)
    wmin, wmax = wind.values.min(), wind.values.max()
    wind = xu.sqrt(pred_data['u10'] ** 2 + pred_data['v10'] ** 2)
    wmin, wmax = min(wind.values.min(), wmin), max(wind.values.max(), wmax)

    pmin, pmax = real_data['tp'].values.min(), real_data['tp'].values.max()
    pmin, pmax = min(pred_data['tp'].values.min(), pmin), max(pred_data['tp'].values.max(), pmax)

    tmin, tmax = real_data['t2m'].values.min(), real_data['t2m'].values.max()
    tmin, tmax = min(pred_data['t2m'].values.min(), tmin), max(pred_data['t2m'].values.max(), tmax)

    for i in range(len(real_data.time)):
        u = real_data['u10'].isel(time=i)
        v = real_data['v10'].isel(time=i)
        wind = xu.sqrt(u ** 2 + v ** 2)
        precip = real_data['tp'].isel(time=i)
        temp = real_data['t2m'].isel(time=i)

        datetime = pd.to_datetime(str(wind['time'].values))
        datetime = datetime.strftime('%Y-%m-%d %H:%M:%S')
        print(f'plot {datetime}')

        imcol(wind, save_path, img_name=f'wind_{datetime}_real', cmap=cmap_t, vmin=wmin, vmax=wmax),
        imcol(precip, save_path, img_name=f'precipitation_{datetime}_real', cmap=cmap_t, vmin=pmin, vmax=pmax),
        imcol(temp, save_path, img_name=f'temperature_{datetime}_real', cmap=cmap_t, vmin=tmin, vmax=tmax)

    for i in range(len(pred_data.time)):
        u = pred_data['u10'].isel(time=i)
        v = pred_data['v10'].isel(time=i)
        wind = xu.sqrt(u ** 2 + v ** 2)
        precip = pred_data['tp'].isel(time=i)
        temp = pred_data['t2m'].isel(time=i)

        datetime = pd.to_datetime(str(wind['time'].values))
        datetime = datetime.strftime('%Y-%m-%d %H:%M:%S')
        print(f'plot {datetime}')

        imcol(wind, save_path, img_name=f'wind_{datetime}_pred', cmap=cmap_t, vmin=wmin, vmax=wmax),
        imcol(precip, save_path, img_name=f'precipitation_{datetime}_pred', cmap=cmap_t, vmin=pmin, vmax=pmax),
        imcol(temp, save_path, img_name=f'temperature_{datetime}_pred', cmap=cmap_t, vmin=tmin, vmax=tmax)


def get_pred(sample, scaler, times=None, latitude=None, longitude=None):

    backbone_model, precip_model = load_model()

    sample = torch.from_numpy(sample[0])
    sample = sample.float()
    
    backbone_model.eval()
    precip_model.eval()
    pred = []
    x = sample.unsqueeze(0).transpose(3, 2).transpose(2, 1)
    for i in range(len(times)):
        print(f"predict {times[i]}")

        with torch.cuda.amp.autocast():
            x = backbone_model(x)
            tmp = x.transpose(1, 2).transpose(2, 3)
            p = precip_model(x)

        tmp = tmp.detach().numpy()[0, :, :, :3] * scaler['std'][:3] + scaler['mean'][:3]
        p = p.detach().numpy()[0, 0, :, :, np.newaxis] * scaler['std'][-1] + scaler['mean'][-1]
        tmp = np.concatenate([tmp, p], axis=-1)
        pred.append(tmp)

    pred = np.asarray(pred)
    pred_data = xr.Dataset({
        'u10': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 0], chunks=(7, 720, 1440))),
        'v10': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 1], chunks=(7, 720, 1440))),
        't2m': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 2], chunks=(7, 720, 1440))),
        'tp': (['time', 'latitude', 'longitude'], da.from_array(pred[:, :, :, 3], chunks=(7, 720, 1440))),
    },
        coords={'time': (['time'], times),
                'latitude': (['latitude'], latitude),
                'longitude': (['longitude'], longitude)
                }
    )

    return pred_data


def get_data(start_time, end_time):
    times = slice(start_time, end_time)

    with open(f'./scaler.pkl', "rb") as f:  # the mean and std of each atmospheric variables
        scaler = pickle.load(f)

    # load weather data
    datas = []
    for file in DATANAMES:
        tmp = xr.open_mfdataset(f'./ERA5_rawdata/{file}/*.nc', combine='by_coords').sel(time=times)
        if '@' in file:
            k, v = file.split('@')
            tmp = tmp.rename_vars({DATAMAP[k]: f'{DATAMAP[k]}@{v}'})
        datas.append(tmp)
    with dask.config.set(**{'array.slicing.split_large_chunks': False}):
        raw_data = xr.merge(datas, compat="identical", join="inner")

    data = []
    for name in ['u10', 'v10', 't2m', 'z@1000', 'z@50', 'z@500', 'z@850', 'msl', 'r@500', 'r@850', 'sp', 't@500', 't@850', 'tcwv', 'u@1000', 'u@500', 'u@850', 'v@1000', 'v@500', 'v@850']:
        raw = raw_data[name].values
        data.append(raw)

    data = np.stack(data, axis=-1)
    data = (data - scaler['mean']) / scaler['std']
    data = data[:, 1:, :, :]   # 721*1440 -> 720*1440

    return raw_data[['u10', 'v10', 't2m', 'tp']].sel(expver=1), data, scaler



if __name__ == '__main__':

    start_time = datetime(2023, 1, 1, 0, 0)
    end_time = datetime(2023, 1, 5, 18, 0)
    num = int((end_time - start_time) / timedelta(hours=6))

    print(f"start_time: {start_time}, end_time: {end_time}, pred_num: {num}")

    real_data, sample, scaler = get_data(start_time)
    print(sample.shape)

    pred_times = [start_time + timedelta(hours=6) * i for i in range(1, num)]
    pred = get_pred(sample, scaler=scaler, times=pred_times, latitude=real_data.latitude[1:], longitude=real_data.longitude)

    save_path = Path(f"./output/")
    save_path.mkdir(parents=True, exist_ok=True)

    plot(real_data, pred, save_path)