File size: 11,659 Bytes
495fe55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
from typing import Union, Tuple

import copy
import torch
import torch.nn as nn
import torch.nn.functional as F

__all__ = ["MobileOneBlock", "reparameterize_model"]


class SEBlock(nn.Module):
    """Squeeze and Excite module.

    Pytorch implementation of `Squeeze-and-Excitation Networks` -
    https://arxiv.org/pdf/1709.01507.pdf
    """

    def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None:
        """Construct a Squeeze and Excite Module.

        Args:
            in_channels: Number of input channels.
            rd_ratio: Input channel reduction ratio.
        """
        super(SEBlock, self).__init__()
        self.reduce = nn.Conv2d(
            in_channels=in_channels,
            out_channels=int(in_channels * rd_ratio),
            kernel_size=1,
            stride=1,
            bias=True,
        )
        self.expand = nn.Conv2d(
            in_channels=int(in_channels * rd_ratio),
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            bias=True,
        )

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        """Apply forward pass."""
        b, c, h, w = inputs.size()
        x = F.avg_pool2d(inputs, kernel_size=[h, w])
        x = self.reduce(x)
        x = F.relu(x)
        x = self.expand(x)
        x = torch.sigmoid(x)
        x = x.view(-1, c, 1, 1)
        return inputs * x


class MobileOneBlock(nn.Module):
    """MobileOne building block.

    This block has a multi-branched architecture at train-time
    and plain-CNN style architecture at inference time
    For more details, please refer to our paper:
    `An Improved One millisecond Mobile Backbone` -
    https://arxiv.org/pdf/2206.04040.pdf
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: int = 0,
        dilation: int = 1,
        groups: int = 1,
        inference_mode: bool = False,
        use_se: bool = False,
        use_act: bool = True,
        use_scale_branch: bool = True,
        num_conv_branches: int = 1,
        activation: nn.Module = nn.GELU(),
    ) -> None:
        """Construct a MobileOneBlock module.

        Args:
            in_channels: Number of channels in the input.
            out_channels: Number of channels produced by the block.
            kernel_size: Size of the convolution kernel.
            stride: Stride size.
            padding: Zero-padding size.
            dilation: Kernel dilation factor.
            groups: Group number.
            inference_mode: If True, instantiates model in inference mode.
            use_se: Whether to use SE-ReLU activations.
            use_act: Whether to use activation. Default: ``True``
            use_scale_branch: Whether to use scale branch. Default: ``True``
            num_conv_branches: Number of linear conv branches.
        """
        super(MobileOneBlock, self).__init__()
        self.inference_mode = inference_mode
        self.groups = groups
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_conv_branches = num_conv_branches

        # Check if SE-ReLU is requested
        if use_se:
            self.se = SEBlock(out_channels)
        else:
            self.se = nn.Identity()

        if use_act:
            self.activation = activation
        else:
            self.activation = nn.Identity()

        if inference_mode:
            self.reparam_conv = nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                dilation=dilation,
                groups=groups,
                bias=True,
            )
        else:
            # Re-parameterizable skip connection
            self.rbr_skip = (
                nn.BatchNorm2d(num_features=in_channels)
                if out_channels == in_channels and stride == 1
                else None
            )

            # Re-parameterizable conv branches
            if num_conv_branches > 0:
                rbr_conv = list()
                for _ in range(self.num_conv_branches):
                    rbr_conv.append(
                        self._conv_bn(kernel_size=kernel_size, padding=padding)
                    )
                self.rbr_conv = nn.ModuleList(rbr_conv)
            else:
                self.rbr_conv = None

            # Re-parameterizable scale branch
            self.rbr_scale = None
            if not isinstance(kernel_size, int):
                kernel_size = kernel_size[0]
            if (kernel_size > 1) and use_scale_branch:
                self.rbr_scale = self._conv_bn(kernel_size=1, padding=0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Apply forward pass."""
        # Inference mode forward pass.
        if self.inference_mode:
            return self.activation(self.se(self.reparam_conv(x)))

        # Multi-branched train-time forward pass.
        # Skip branch output
        identity_out = 0
        if self.rbr_skip is not None:
            identity_out = self.rbr_skip(x)

        # Scale branch output
        scale_out = 0
        if self.rbr_scale is not None:
            scale_out = self.rbr_scale(x)

        # Other branches
        out = scale_out + identity_out
        if self.rbr_conv is not None:
            for ix in range(self.num_conv_branches):
                out += self.rbr_conv[ix](x)

        return self.activation(self.se(out))

    def reparameterize(self):
        """Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
        https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
        architecture used at training time to obtain a plain CNN-like structure
        for inference.
        """
        if self.inference_mode:
            return
        kernel, bias = self._get_kernel_bias()
        self.reparam_conv = nn.Conv2d(
            in_channels=self.in_channels,
            out_channels=self.out_channels,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups,
            bias=True,
        )
        self.reparam_conv.weight.data = kernel
        self.reparam_conv.bias.data = bias

        # Delete un-used branches
        for para in self.parameters():
            para.detach_()
        self.__delattr__("rbr_conv")
        self.__delattr__("rbr_scale")
        if hasattr(self, "rbr_skip"):
            self.__delattr__("rbr_skip")

        self.inference_mode = True

    def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
        """Method to obtain re-parameterized kernel and bias.
        Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83

        Returns:
            Tuple of (kernel, bias) after fusing branches.
        """
        # get weights and bias of scale branch
        kernel_scale = 0
        bias_scale = 0
        if self.rbr_scale is not None:
            kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale)
            # Pad scale branch kernel to match conv branch kernel size.
            pad = self.kernel_size // 2
            kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad])

        # get weights and bias of skip branch
        kernel_identity = 0
        bias_identity = 0
        if self.rbr_skip is not None:
            kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip)

        # get weights and bias of conv branches
        kernel_conv = 0
        bias_conv = 0
        if self.rbr_conv is not None:
            for ix in range(self.num_conv_branches):
                _kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix])
                kernel_conv += _kernel
                bias_conv += _bias

        kernel_final = kernel_conv + kernel_scale + kernel_identity
        bias_final = bias_conv + bias_scale + bias_identity
        return kernel_final, bias_final

    def _fuse_bn_tensor(
        self, branch: Union[nn.Sequential, nn.BatchNorm2d]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Method to fuse batchnorm layer with preceeding conv layer.
        Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95

        Args:
            branch: Sequence of ops to be fused.

        Returns:
            Tuple of (kernel, bias) after fusing batchnorm.
        """
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, "id_tensor"):
                input_dim = self.in_channels // self.groups

                kernel_size = self.kernel_size
                if isinstance(self.kernel_size, int):
                    kernel_size = (self.kernel_size, self.kernel_size)

                kernel_value = torch.zeros(
                    (self.in_channels, input_dim, kernel_size[0], kernel_size[1]),
                    dtype=branch.weight.dtype,
                    device=branch.weight.device,
                )
                for i in range(self.in_channels):
                    kernel_value[
                        i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2
                    ] = 1
                self.id_tensor = kernel_value
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential:
        """Helper method to construct conv-batchnorm layers.

        Args:
            kernel_size: Size of the convolution kernel.
            padding: Zero-padding size.

        Returns:
            Conv-BN module.
        """
        mod_list = nn.Sequential()
        mod_list.add_module(
            "conv",
            nn.Conv2d(
                in_channels=self.in_channels,
                out_channels=self.out_channels,
                kernel_size=kernel_size,
                stride=self.stride,
                padding=padding,
                groups=self.groups,
                bias=False,
            ),
        )
        mod_list.add_module("bn", nn.BatchNorm2d(num_features=self.out_channels))
        return mod_list


def reparameterize_model(model: torch.nn.Module) -> nn.Module:
    """Method returns a model where a multi-branched structure
        used in training is re-parameterized into a single branch
        for inference.

    Args:
        model: MobileOne model in train mode.

    Returns:
        MobileOne model in inference mode.
    """
    # Avoid editing original graph
    model = copy.deepcopy(model)
    for module in model.modules():
        if hasattr(module, "reparameterize"):
            module.reparameterize()
    return model