File size: 5,410 Bytes
f64faed
 
 
 
 
 
 
125e69e
f64faed
 
f7c35ba
f64faed
f7c35ba
f64faed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fadc9b
f7c35ba
f64faed
 
 
 
 
 
 
f7c35ba
 
f64faed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7c35ba
f64faed
 
 
 
 
 
 
125e69e
 
 
f7c35ba
 
 
 
125e69e
 
 
 
 
 
 
 
d3d22eb
125e69e
 
 
f7c35ba
125e69e
d3d22eb
125e69e
 
 
d3d22eb
125e69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import torchvision.transforms as transforms
import types
import os
import mobileclip

# Set the device to GPU if available, otherwise use CPU
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32

def split_chessboard(x, num_split):
    B, C, H, W = x.shape
    h, w = H // num_split, W // num_split
    x_split = torch.cat([x[:, :, i*h:(i+1)*h, j*w:(j+1)*w] for i in range(num_split) for j in range(num_split)], dim=0)
    return x_split

def merge_chessboard(x, num_split):
    B, C, H, W = x.shape
    b = B // (num_split**2)
    x_merge = torch.cat([torch.cat([x[(i*num_split + j)*b:(i*num_split + j + 1)*b] for j in range(num_split)], dim=-1)
                         for i in range(num_split)], dim=-2)
    return x_merge

class FeatureIRLayer(nn.Module):
    def __init__(self, in_dim: int, hidden_dim: int, out_dim: int) -> None:
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(in_dim, 4096),
            nn.GELU(approximate='tanh')
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.mlp(x)

class MobileVision(nn.Module):
    def __init__(self):
        super(MobileVision, self).__init__()
        self.vision, _, _ = mobileclip.create_model_and_transforms('mobileclip_s2', pretrained='mobileclip_s2.pt')
        self.vision = self.vision.image_encoder.model.eval().to(DEVICE).to(DTYPE)

        def new_forward(self, x: torch.Tensor) -> torch.Tensor:
            x = self.forward_embeddings(x)
            x = self.forward_tokens(x)
            return self.conv_exp(x)
        self.vision.forward = types.MethodType(new_forward, self.vision)

        self.projection = FeatureIRLayer(1280*2, 4096, 1536).to(DEVICE).to(DTYPE)
        self.projection2 = nn.Linear(4096, 1536).to(DEVICE).to(DTYPE)

    def forward(self, x):
        with torch.no_grad():
            resized_img = F.interpolate(x, size=(256, 256), mode='bilinear', align_corners=False)
            out1 = self.vision(resized_img)
            x = split_chessboard(x, 2)
            x = self.vision(x)
            x = merge_chessboard(x, 2)
            x = F.interpolate(x, size=(8, 8), mode='area')
            x = torch.cat([out1, x], dim=1)

            x = x.reshape(x.size(0), x.size(1), -1)
            x = x.permute(0, 2, 1)

        x = self.projection(x)
        x = self.projection2(x)
        return x

class MoondreamModel(nn.Module):
    def __init__(self):
        super(MoondreamModel, self).__init__()
        self.vision_encoder = MobileVision()
        self.text_model = AutoModelForCausalLM.from_pretrained(
            "h2oai/h2o-danube3-500m-chat",
            trust_remote_code=True,
            torch_dtype=DTYPE,
            device_map={"": DEVICE}
        )
        self.load_state_dict(torch.load('moondream_model_state_dict.pt', map_location=DEVICE))

    def forward(self, images, tokens):
        img_embs = self.vision_encoder(images)
        tok_embs = self.text_model.get_input_embeddings()(tokens)
        inputs_embeds = torch.cat((tok_embs[:, 0:1, :], img_embs, tok_embs[:, 1:, :]), dim=1)
        outputs = self.text_model(inputs_embeds=inputs_embeds)
        return outputs

    @staticmethod
    def load_model():
        model = MoondreamModel().to(DEVICE)
        # Only apply half() if using a GPU
        if torch.cuda.is_available():
            model = model.half()
        return model

    @staticmethod
    def load_tokenizer():
        tokenizer = AutoTokenizer.from_pretrained("h2oai/h2o-danube3-500m-chat", trust_remote_code=True)
        return tokenizer

    @staticmethod
    def preprocess_image(image, img_size=512):
        transform = transforms.Compose([
            transforms.Resize((img_size, img_size)),
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x.to(DTYPE)),
        ])
        # The `image` is now a PIL image, so no need to load it from the file path
        image = transform(image).to(DEVICE)
        return image


    @staticmethod
    def generate_caption(model, image, tokenizer, max_length=128):
        model.eval()
        with torch.no_grad():
            image = image.unsqueeze(0).to(DEVICE)
            img_embs = model.vision_encoder(image)

            generated = [tokenizer.bos_token_id]
            descriptive_prompt = tokenizer(
                f"\n\nDescriptions of the image:",
                add_special_tokens=False
            ).input_ids
            generated.extend(descriptive_prompt)

            for _ in range(max_length):
                input_ids = torch.tensor(generated, dtype=torch.long, device=DEVICE).unsqueeze(0)
                tok_embs = model.text_model.get_input_embeddings()(input_ids)
                inputs_embeds = torch.cat((tok_embs[:, 0:1, :], img_embs, tok_embs[:, 1:, :]), dim=1)
                outputs = model.text_model(inputs_embeds=inputs_embeds)
                next_token_logits = outputs.logits[:, -1, :]
                next_token = torch.argmax(next_token_logits, dim=-1).item()

                if next_token == tokenizer.sep_token_id:
                    break

                generated.append(next_token)

            return tokenizer.decode(generated, skip_special_tokens=True)