# # For licensing see accompanying LICENSE file. # Copyright (C) 2024 Apple Inc. All Rights Reserved. # from typing import Union, Tuple import copy import torch import torch.nn as nn import torch.nn.functional as F __all__ = ["MobileOneBlock", "reparameterize_model"] class SEBlock(nn.Module): """Squeeze and Excite module. Pytorch implementation of `Squeeze-and-Excitation Networks` - https://arxiv.org/pdf/1709.01507.pdf """ def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None: """Construct a Squeeze and Excite Module. Args: in_channels: Number of input channels. rd_ratio: Input channel reduction ratio. """ super(SEBlock, self).__init__() self.reduce = nn.Conv2d( in_channels=in_channels, out_channels=int(in_channels * rd_ratio), kernel_size=1, stride=1, bias=True, ) self.expand = nn.Conv2d( in_channels=int(in_channels * rd_ratio), out_channels=in_channels, kernel_size=1, stride=1, bias=True, ) def forward(self, inputs: torch.Tensor) -> torch.Tensor: """Apply forward pass.""" b, c, h, w = inputs.size() x = F.avg_pool2d(inputs, kernel_size=[h, w]) x = self.reduce(x) x = F.relu(x) x = self.expand(x) x = torch.sigmoid(x) x = x.view(-1, c, 1, 1) return inputs * x class MobileOneBlock(nn.Module): """MobileOne building block. This block has a multi-branched architecture at train-time and plain-CNN style architecture at inference time For more details, please refer to our paper: `An Improved One millisecond Mobile Backbone` - https://arxiv.org/pdf/2206.04040.pdf """ def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, groups: int = 1, inference_mode: bool = False, use_se: bool = False, use_act: bool = True, use_scale_branch: bool = True, num_conv_branches: int = 1, activation: nn.Module = nn.GELU(), ) -> None: """Construct a MobileOneBlock module. Args: in_channels: Number of channels in the input. out_channels: Number of channels produced by the block. kernel_size: Size of the convolution kernel. stride: Stride size. padding: Zero-padding size. dilation: Kernel dilation factor. groups: Group number. inference_mode: If True, instantiates model in inference mode. use_se: Whether to use SE-ReLU activations. use_act: Whether to use activation. Default: ``True`` use_scale_branch: Whether to use scale branch. Default: ``True`` num_conv_branches: Number of linear conv branches. """ super(MobileOneBlock, self).__init__() self.inference_mode = inference_mode self.groups = groups self.stride = stride self.padding = padding self.dilation = dilation self.kernel_size = kernel_size self.in_channels = in_channels self.out_channels = out_channels self.num_conv_branches = num_conv_branches # Check if SE-ReLU is requested if use_se: self.se = SEBlock(out_channels) else: self.se = nn.Identity() if use_act: self.activation = activation else: self.activation = nn.Identity() if inference_mode: self.reparam_conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True, ) else: # Re-parameterizable skip connection self.rbr_skip = ( nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None ) # Re-parameterizable conv branches if num_conv_branches > 0: rbr_conv = list() for _ in range(self.num_conv_branches): rbr_conv.append( self._conv_bn(kernel_size=kernel_size, padding=padding) ) self.rbr_conv = nn.ModuleList(rbr_conv) else: self.rbr_conv = None # Re-parameterizable scale branch self.rbr_scale = None if not isinstance(kernel_size, int): kernel_size = kernel_size[0] if (kernel_size > 1) and use_scale_branch: self.rbr_scale = self._conv_bn(kernel_size=1, padding=0) def forward(self, x: torch.Tensor) -> torch.Tensor: """Apply forward pass.""" # Inference mode forward pass. if self.inference_mode: return self.activation(self.se(self.reparam_conv(x))) # Multi-branched train-time forward pass. # Skip branch output identity_out = 0 if self.rbr_skip is not None: identity_out = self.rbr_skip(x) # Scale branch output scale_out = 0 if self.rbr_scale is not None: scale_out = self.rbr_scale(x) # Other branches out = scale_out + identity_out if self.rbr_conv is not None: for ix in range(self.num_conv_branches): out += self.rbr_conv[ix](x) return self.activation(self.se(out)) def reparameterize(self): """Following works like `RepVGG: Making VGG-style ConvNets Great Again` - https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched architecture used at training time to obtain a plain CNN-like structure for inference. """ if self.inference_mode: return kernel, bias = self._get_kernel_bias() self.reparam_conv = nn.Conv2d( in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True, ) self.reparam_conv.weight.data = kernel self.reparam_conv.bias.data = bias # Delete un-used branches for para in self.parameters(): para.detach_() self.__delattr__("rbr_conv") self.__delattr__("rbr_scale") if hasattr(self, "rbr_skip"): self.__delattr__("rbr_skip") self.inference_mode = True def _get_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]: """Method to obtain re-parameterized kernel and bias. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83 Returns: Tuple of (kernel, bias) after fusing branches. """ # get weights and bias of scale branch kernel_scale = 0 bias_scale = 0 if self.rbr_scale is not None: kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale) # Pad scale branch kernel to match conv branch kernel size. pad = self.kernel_size // 2 kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad]) # get weights and bias of skip branch kernel_identity = 0 bias_identity = 0 if self.rbr_skip is not None: kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip) # get weights and bias of conv branches kernel_conv = 0 bias_conv = 0 if self.rbr_conv is not None: for ix in range(self.num_conv_branches): _kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix]) kernel_conv += _kernel bias_conv += _bias kernel_final = kernel_conv + kernel_scale + kernel_identity bias_final = bias_conv + bias_scale + bias_identity return kernel_final, bias_final def _fuse_bn_tensor( self, branch: Union[nn.Sequential, nn.BatchNorm2d] ) -> Tuple[torch.Tensor, torch.Tensor]: """Method to fuse batchnorm layer with preceeding conv layer. Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95 Args: branch: Sequence of ops to be fused. Returns: Tuple of (kernel, bias) after fusing batchnorm. """ if isinstance(branch, nn.Sequential): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, "id_tensor"): input_dim = self.in_channels // self.groups kernel_size = self.kernel_size if isinstance(self.kernel_size, int): kernel_size = (self.kernel_size, self.kernel_size) kernel_value = torch.zeros( (self.in_channels, input_dim, kernel_size[0], kernel_size[1]), dtype=branch.weight.dtype, device=branch.weight.device, ) for i in range(self.in_channels): kernel_value[ i, i % input_dim, kernel_size[0] // 2, kernel_size[1] // 2 ] = 1 self.id_tensor = kernel_value kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential: """Helper method to construct conv-batchnorm layers. Args: kernel_size: Size of the convolution kernel. padding: Zero-padding size. Returns: Conv-BN module. """ mod_list = nn.Sequential() mod_list.add_module( "conv", nn.Conv2d( in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=kernel_size, stride=self.stride, padding=padding, groups=self.groups, bias=False, ), ) mod_list.add_module("bn", nn.BatchNorm2d(num_features=self.out_channels)) return mod_list def reparameterize_model(model: torch.nn.Module) -> nn.Module: """Method returns a model where a multi-branched structure used in training is re-parameterized into a single branch for inference. Args: model: MobileOne model in train mode. Returns: MobileOne model in inference mode. """ # Avoid editing original graph model = copy.deepcopy(model) for module in model.modules(): if hasattr(module, "reparameterize"): module.reparameterize() return model