File size: 6,125 Bytes
5085882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn

import sys
sys.path.append("/train20/intern/permanent/changli7/dataset_ptm")
from taming.modules.losses.vqperceptual import *  # TODO: taming dependency yes/no?


class LPIPSWithDiscriminator(nn.Module):
    def __init__(
        self,
        disc_start,
        logvar_init=0.0,
        kl_weight=1.0,
        pixelloss_weight=1.0,
        disc_num_layers=3,
        disc_in_channels=3,
        disc_factor=1.0,
        disc_weight=1.0,
        perceptual_weight=1.0,
        use_actnorm=False,
        disc_conditional=False,
        disc_loss="hinge",
    ):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        self.kl_weight = kl_weight
        self.pixel_weight = pixelloss_weight
        self.perceptual_loss = LPIPS().eval()
        self.perceptual_weight = perceptual_weight
        # output log variance
        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)

        self.discriminator = NLayerDiscriminator(
            input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm
        ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(
                nll_loss, self.last_layer[0], retain_graph=True
            )[0]
            g_grads = torch.autograd.grad(
                g_loss, self.last_layer[0], retain_graph=True
            )[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(
        self,
        inputs,
        reconstructions,
        posteriors,
        optimizer_idx,
        global_step,
        waveform=None,
        rec_waveform=None,
        last_layer=None,
        cond=None,
        split="train",
        weights=None,
    ):
        rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())

        # Always true
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(
                inputs.contiguous(), reconstructions.contiguous()
            )
            rec_loss = rec_loss + self.perceptual_weight * p_loss

        nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
        weighted_nll_loss = nll_loss
        if weights is not None:
            weighted_nll_loss = weights * nll_loss
        weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
        nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
        kl_loss = posteriors.kl()
        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]

        # now the GAN part
        if optimizer_idx == 0:
            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(reconstructions.contiguous())
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(
                    torch.cat((reconstructions.contiguous(), cond), dim=1)
                )
            g_loss = -torch.mean(logits_fake)

            if self.disc_factor > 0.0:
                try:
                    d_weight = self.calculate_adaptive_weight(
                        nll_loss, g_loss, last_layer=last_layer
                    )
                except RuntimeError:
                    assert not self.training
                    d_weight = torch.tensor(0.0)
            else:
                d_weight = torch.tensor(0.0)

            disc_factor = adopt_weight(
                self.disc_factor, global_step, threshold=self.discriminator_iter_start
            )
            loss = (
                weighted_nll_loss
                + self.kl_weight * kl_loss
                + d_weight * disc_factor * g_loss
            )

            log = {
                "{}/total_loss".format(split): loss.clone().detach().mean(),
                "{}/logvar".format(split): self.logvar.detach(),
                "{}/kl_loss".format(split): kl_loss.detach().mean(),
                "{}/nll_loss".format(split): nll_loss.detach().mean(),
                "{}/rec_loss".format(split): rec_loss.detach().mean(),
                "{}/d_weight".format(split): d_weight.detach(),
                "{}/disc_factor".format(split): torch.tensor(disc_factor),
                "{}/g_loss".format(split): g_loss.detach().mean(),
            }
            return loss, log

        if optimizer_idx == 1:
            # second pass for discriminator update
            if cond is None:
                logits_real = self.discriminator(inputs.contiguous().detach())
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
            else:
                logits_real = self.discriminator(
                    torch.cat((inputs.contiguous().detach(), cond), dim=1)
                )
                logits_fake = self.discriminator(
                    torch.cat((reconstructions.contiguous().detach(), cond), dim=1)
                )

            disc_factor = adopt_weight(
                self.disc_factor, global_step, threshold=self.discriminator_iter_start
            )
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {
                "{}/disc_loss".format(split): d_loss.clone().detach().mean(),
                "{}/logits_real".format(split): logits_real.detach().mean(),
                "{}/logits_fake".format(split): logits_fake.detach().mean(),
            }
            return d_loss, log