# Copyright (C) 2022-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # croco: https://github.com/naver/croco # diffusers: https://github.com/huggingface/diffusers # -------------------------------------------------------- # Position embedding utils # -------------------------------------------------------- import numpy as np import torch def get_2d_sincos_pos_embed( embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16 ): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, int): grid_size = (grid_size, grid_size) grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb # ---------------------------------------------------------- # RoPE2D: RoPE implementation in 2D # ---------------------------------------------------------- try: from .curope import cuRoPE2D RoPE2D = cuRoPE2D except ImportError: print('Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead') class RoPE2D(torch.nn.Module): def __init__(self, freq=100.0, F0=1.0): super().__init__() self.base = freq self.F0 = F0 self.cache = {} def get_cos_sin(self, D, seq_len, device, dtype): if (D, seq_len, device, dtype) not in self.cache: inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) freqs = torch.cat((freqs, freqs), dim=-1) cos = freqs.cos() # (Seq, Dim) sin = freqs.sin() self.cache[D, seq_len, device, dtype] = (cos, sin) return self.cache[D, seq_len, device, dtype] @staticmethod def rotate_half(x): x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def apply_rope1d(self, tokens, pos1d, cos, sin): assert pos1d.ndim == 2 # import pdb # pdb.set_trace() cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :].squeeze(1) sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :].squeeze(1) return (tokens * cos) + (self.rotate_half(tokens) * sin) def forward(self, tokens, positions): """ input: * tokens: batch_size x nheads x ntokens x dim * positions: batch_size x ntokens x 2 (y and x position of each token) output: * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) """ positions = positions.to(torch.int).to(tokens.device) assert tokens.size(2) % 2 == 0, "number of dimensions should be a multiple of two" D = tokens.size(2) // 2 assert positions.ndim == 3 and positions.shape[-1] == 2 # Batch, Seq, 2 cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype) # split features into two along the feature dimension, and apply rope1d on each half y, x = tokens.chunk(2, dim=-1) y = self.apply_rope1d(y, positions[:, :, 0], cos, sin) x = self.apply_rope1d(x, positions[:, :, 1], cos, sin) tokens = torch.cat((y, x), dim=-1) return tokens