import math import torch import torch.nn as nn class TransformerModel(nn.Module): def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1): super(TransformerModel, self).__init__() self.model_type = 'Transformer' self.src_mask = None self.pos_encoder = PositionalEncoding(d_model, dropout) self.encoder = nn.Embedding(vocab_size, d_model) self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout) self.decoder = nn.Linear(d_model, vocab_size) def forward(self, src, tgt, src_mask=None, tgt_mask=None): src = self.encoder(src) * math.sqrt(self.d_model) src = self.pos_encoder(src) tgt = self.encoder(tgt) * math.sqrt(self.d_model) tgt = self.pos_encoder(tgt) output = self.transformer(src, tgt, src_mask, tgt_mask) output = self.decoder(output) return output class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x)