File size: 7,774 Bytes
738b9a7
355f3ac
6bf8d03
e031c18
 
 
348739a
e031c18
0e46985
e031c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e46985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e031c18
bd04299
738b9a7
eece828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a23e42
 
 
aee1800
7dcf2f9
aee1800
 
 
 
 
738b9a7
aee1800
 
 
 
 
 
 
 
3b2551a
aee1800
 
7dcf2f9
738b9a7
aee1800
 
 
738b9a7
 
aee1800
 
 
 
 
 
 
 
 
738b9a7
eece828
3b2551a
738b9a7
90f97d8
ed063c4
 
513bf2d
90f97d8
513bf2d
90f97d8
ed063c4
 
 
 
 
513bf2d
90f97d8
ed063c4
 
 
 
 
 
513bf2d
ed063c4
 
90f97d8
ed063c4
 
 
 
 
 
e031c18
ed063c4
 
e031c18
90f97d8
e031c18
90f97d8
ed063c4
 
3b2551a
 
ed063c4
 
a7b7485
ed063c4
e031c18
 
ed063c4
e031c18
eece828
 
 
 
 
ed063c4
a7b7485
e031c18
a7b7485
90f97d8
a7b7485
ed063c4
e031c18
ed063c4
e031c18
eece828
738b9a7
 
eece828
 
 
 
 
 
738b9a7
962eed9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#semantic_analysis.py
import streamlit as st
import spacy
import networkx as nx
import matplotlib.pyplot as plt
from collections import Counter
from collections import defaultdict

# Remove the global nlp model loading

# Define colors for grammatical categories
POS_COLORS = {
    'ADJ': '#FFA07A',    # Light Salmon
    'ADP': '#98FB98',    # Pale Green
    'ADV': '#87CEFA',    # Light Sky Blue
    'AUX': '#DDA0DD',    # Plum
    'CCONJ': '#F0E68C',  # Khaki
    'DET': '#FFB6C1',    # Light Pink
    'INTJ': '#FF6347',   # Tomato
    'NOUN': '#90EE90',   # Light Green
    'NUM': '#FAFAD2',    # Light Goldenrod Yellow
    'PART': '#D3D3D3',   # Light Gray
    'PRON': '#FFA500',   # Orange
    'PROPN': '#20B2AA',  # Light Sea Green
    'SCONJ': '#DEB887',  # Burlywood
    'SYM': '#7B68EE',    # Medium Slate Blue
    'VERB': '#FF69B4',   # Hot Pink
    'X': '#A9A9A9',      # Dark Gray
}

POS_TRANSLATIONS = {
    'es': {
        'ADJ': 'Adjetivo',
        'ADP': 'Adposición',
        'ADV': 'Adverbio',
        'AUX': 'Auxiliar',
        'CCONJ': 'Conjunción Coordinante',
        'DET': 'Determinante',
        'INTJ': 'Interjección',
        'NOUN': 'Sustantivo',
        'NUM': 'Número',
        'PART': 'Partícula',
        'PRON': 'Pronombre',
        'PROPN': 'Nombre Propio',
        'SCONJ': 'Conjunción Subordinante',
        'SYM': 'Símbolo',
        'VERB': 'Verbo',
        'X': 'Otro',
    },
    'en': {
        'ADJ': 'Adjective',
        'ADP': 'Adposition',
        'ADV': 'Adverb',
        'AUX': 'Auxiliary',
        'CCONJ': 'Coordinating Conjunction',
        'DET': 'Determiner',
        'INTJ': 'Interjection',
        'NOUN': 'Noun',
        'NUM': 'Number',
        'PART': 'Particle',
        'PRON': 'Pronoun',
        'PROPN': 'Proper Noun',
        'SCONJ': 'Subordinating Conjunction',
        'SYM': 'Symbol',
        'VERB': 'Verb',
        'X': 'Other',
    },
    'fr': {
        'ADJ': 'Adjectif',
        'ADP': 'Adposition',
        'ADV': 'Adverbe',
        'AUX': 'Auxiliaire',
        'CCONJ': 'Conjonction de Coordination',
        'DET': 'Déterminant',
        'INTJ': 'Interjection',
        'NOUN': 'Nom',
        'NUM': 'Nombre',
        'PART': 'Particule',
        'PRON': 'Pronom',
        'PROPN': 'Nom Propre',
        'SCONJ': 'Conjonction de Subordination',
        'SYM': 'Symbole',
        'VERB': 'Verbe',
        'X': 'Autre',
    }
}
########################################################################################################################################

# Definimos las etiquetas y colores para cada idioma
ENTITY_LABELS = {
    'es': {
        "Personas": "lightblue",
        "Conceptos": "lightgreen",
        "Lugares": "lightcoral",
        "Fechas": "lightyellow"
    },
    'en': {
        "People": "lightblue",
        "Concepts": "lightgreen",
        "Places": "lightcoral",
        "Dates": "lightyellow"
    },
    'fr': {
        "Personnes": "lightblue",
        "Concepts": "lightgreen",
        "Lieux": "lightcoral",
        "Dates": "lightyellow"
    }
}

#########################################################################################################
def count_pos(doc):
    return Counter(token.pos_ for token in doc if token.pos_ != 'PUNCT')

#####################################################################################################################

def create_semantic_graph(doc, lang):
    G = nx.Graph()
    word_freq = defaultdict(int)
    lemma_to_word = {}
    lemma_to_pos = {}

    # Count frequencies of lemmas and map lemmas to their most common word form and POS
    for token in doc:
        if token.pos_ in ['NOUN', 'VERB']:
            lemma = token.lemma_.lower()
            word_freq[lemma] += 1
            if lemma not in lemma_to_word or token.text.lower() == lemma:
                lemma_to_word[lemma] = token.text
            lemma_to_pos[lemma] = token.pos_

    # Get top 20 most frequent lemmas
    top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]

    # Add nodes
    for lemma in top_lemmas:
        word = lemma_to_word[lemma]
        G.add_node(word, pos=lemma_to_pos[lemma])

    # Add edges
    for token in doc:
        if token.lemma_.lower() in top_lemmas:
            if token.head.lemma_.lower() in top_lemmas:
                source = lemma_to_word[token.lemma_.lower()]
                target = lemma_to_word[token.head.lemma_.lower()]
                if source != target:  # Avoid self-loops
                    G.add_edge(source, target, label=token.dep_)

    return G, word_freq

############################################################################################################################################

def visualize_semantic_relations(doc, lang):
    G = nx.Graph()
    word_freq = defaultdict(int)
    lemma_to_word = {}
    lemma_to_pos = {}

    # Count frequencies of lemmas and map lemmas to their most common word form and POS
    for token in doc:
        if token.pos_ in ['NOUN', 'VERB']:
            lemma = token.lemma_.lower()
            word_freq[lemma] += 1
            if lemma not in lemma_to_word or token.text.lower() == lemma:
                lemma_to_word[lemma] = token.text
            lemma_to_pos[lemma] = token.pos_

    # Get top 20 most frequent lemmas
    top_lemmas = [lemma for lemma, _ in sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]]

    # Add nodes
    for lemma in top_lemmas:
        word = lemma_to_word[lemma]
        G.add_node(word, pos=lemma_to_pos[lemma])

    # Add edges
    for token in doc:
        if token.lemma_.lower() in top_lemmas:
            if token.head.lemma_.lower() in top_lemmas:
                source = lemma_to_word[token.lemma_.lower()]
                target = lemma_to_word[token.head.lemma_.lower()]
                if source != target:  # Avoid self-loops
                    G.add_edge(source, target, label=token.dep_)

    fig, ax = plt.subplots(figsize=(36, 27))
    pos = nx.spring_layout(G, k=0.7, iterations=50)

    node_colors = [POS_COLORS.get(G.nodes[node]['pos'], '#CCCCCC') for node in G.nodes()]

    nx.draw(G, pos, node_color=node_colors, with_labels=True, 
            node_size=10000, 
            font_size=16, 
            font_weight='bold', 
            arrows=True, 
            arrowsize=30, 
            width=3, 
            edge_color='gray',
            ax=ax)

    edge_labels = nx.get_edge_attributes(G, 'label')
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=14, ax=ax)

    title = {
        'es': "Relaciones Semánticas Relevantes",
        'en': "Relevant Semantic Relations",
        'fr': "Relations Sémantiques Pertinentes"
    }
    ax.set_title(title[lang], fontsize=24, fontweight='bold')
    ax.axis('off')

    legend_elements = [plt.Rectangle((0,0),1,1,fc=POS_COLORS.get(pos, '#CCCCCC'), edgecolor='none', 
                       label=f"{POS_TRANSLATIONS[lang].get(pos, pos)}")
                       for pos in ['NOUN', 'VERB']]
    ax.legend(handles=legend_elements, loc='center left', bbox_to_anchor=(1, 0.5), fontsize=16)

    return fig

############################################################################################################################################
def perform_semantic_analysis(text, nlp, lang):
    doc = nlp(text)
    
    # Imprimir entidades para depuración
    print(f"Entidades encontradas ({lang}):")
    for ent in doc.ents:
        print(f"{ent.text} - {ent.label_}")
    
    relations_graph = visualize_semantic_relations(doc, lang)
    return relations_graph  # Ahora solo devuelve un único gráfico

__all__ = ['visualize_semantic_relations', 'create_semantic_graph', 'POS_COLORS', 'POS_TRANSLATIONS']