is_virtualstaging / fastai /optimizer.py
AItool's picture
Upload 127 files
a983ebc
raw
history blame
No virus
21.2 kB
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/12_optimizer.ipynb.
# %% ../nbs/12_optimizer.ipynb 2
from __future__ import annotations
from .torch_basics import *
# %% auto 0
__all__ = ['pytorch_hp_map', 'Optimizer', 'sgd_step', 'weight_decay', 'l2_reg', 'average_grad', 'average_sqr_grad',
'momentum_step', 'SGD', 'rms_prop_step', 'RMSProp', 'step_stat', 'debias', 'adam_step', 'Adam', 'radam_step',
'RAdam', 'qhadam_step', 'QHAdam', 'larc_layer_lr', 'larc_step', 'Larc', 'lamb_step', 'Lamb', 'Lookahead',
'ranger', 'detuplify_pg', 'set_item_pg', 'OptimWrapper']
# %% ../nbs/12_optimizer.ipynb 6
class _BaseOptimizer():
"Common functionality between `Optimizer` and `OptimWrapper`"
def all_params(self,
n:slice|int=slice(None), # Extended slicing over the optimizer `param_lists`
with_grad:bool=False # Get all param tuples. If `True` select only those with a gradient
):
res = L((p,pg,self.state[p],hyper) for pg,hyper in zip(self.param_lists[n],self.hypers[n]) for p in pg)
return L(o for o in res if hasattr(o[0], 'grad') and o[0].grad is not None) if with_grad else res
def _set_require_grad(self,
rg:bool, # Requires grad: if `True` sets gradient for parameters, else uses state `state["force_train"]`
p:Tensor, # Parameters to set gradient
pg, # Param groups (unused but needed because unpack *o)
state: dict,
h # Hyperparameter (unused but needed because unpack *o)
):
p.requires_grad_(rg or state.get('force_train', False))
def freeze_to(self,
n:int # Freeze up to `n` layers
):
self.frozen_idx = n if n >= 0 else len(self.param_lists) + n
if self.frozen_idx >= len(self.param_lists):
warn(f"Freezing {self.frozen_idx} groups; model has {len(self.param_lists)}; whole model is frozen.")
for o in self.all_params(slice(n, None)): self._set_require_grad(True, *o)
for o in self.all_params(slice(None, n)): self._set_require_grad(False, *o)
def freeze(self):
assert(len(self.param_lists)>1)
self.freeze_to(-1)
def set_hypers(self, **kwargs): L(kwargs.items()).starmap(self.set_hyper)
def _set_hyper(self,
k, # Hyperparameter key
v # Hyperparameter value
):
for v_,h in zip(v, self.hypers): h[k] = v_
def set_hyper(self,
k, # Hyperparameter key or slice of keys
v # Hyperparameter value or slice of values
):
if isinstance(v, slice):
if v.start: v = even_mults(v.start, v.stop, len(self.param_lists))
else: v = [v.stop/10]*(len(self.param_lists)-1) + [v.stop]
v = L(v, use_list=None)
if len(v)==1: v = v*len(self.param_lists)
assert len(v) == len(self.hypers), f"Trying to set {len(v)} values for {k} but there are {len(self.param_lists)} parameter groups."
self._set_hyper(k, v)
def unfreeze(self): self.freeze_to(0)
@property
def param_groups(self): return [{**{'params': pg}, **hp} for pg,hp in zip(self.param_lists, self.hypers)]
@param_groups.setter
def param_groups(self,
v:dict # List of dicts to set `params` and other hyper parameters
):
for pg,v_ in zip(self.param_lists,v): pg = v_['params']
for hyper,v_ in zip(self.hypers,v):
for k,t in v_.items():
if k != 'params': hyper[k] = t
# %% ../nbs/12_optimizer.ipynb 8
def _update(
state:dict,
new=None # New values to update `state` dict
):
if new is None: return state
if isinstance(new, dict): state.update(new)
return state
# %% ../nbs/12_optimizer.ipynb 10
class Optimizer(_BaseOptimizer):
"Base optimizer class for the fastai library, updating `params` with `cbs`"
_keep_on_clear = ['force_train', 'do_wd']
def __init__(self,
params:Tensor|Iterable, # Model parameters
cbs:callable|MutableSequence, # `Optimizer` step callbacks
**defaults # Hyper parameters default values
):
if 'train_bn' in defaults.keys():
_ = defaults.pop('train_bn')
warn('Setting `train_bn` in `Optimizer` has no effect. Set `train_bn` on `Learner` init instead')
params = L(params)
self.cbs,self.state = L(cbs),defaultdict(dict)
defaults = merge(*self.cbs.attrgot('defaults'), defaults)
self.param_lists = L(L(p) for p in params) if isinstance(params[0], (L,list)) else L([params])
self.hypers = L({} for _ in range_of(self.param_lists))
self.set_hypers(**defaults)
self.frozen_idx = 0
def zero_grad(self):
for p,*_ in self.all_params(with_grad=True):
p.grad.detach_()
p.grad.zero_()
def step(self, closure=None):
if closure is not None: raise NotImplementedError("fastai optimizers currently do not support closure")
for p,pg,state,hyper in self.all_params(with_grad=True):
for cb in self.cbs: state = _update(state, cb(p, **{**state, **hyper}))
self.state[p] = state
def clear_state(self):
for p,pg,state,hyper in self.all_params():
self.state[p] = {k: state[k] for k in self._keep_on_clear if k in state}
def state_dict(self):
state = [self.state[p] for p,*_ in self.all_params()]
return {'state': state, 'hypers': self.hypers}
def load_state_dict(self,
sd:dict # State dict with `hypers` and `state` to load on the optimizer
):
assert len(sd["hypers"]) == len(self.param_lists)
assert len(sd["state"]) == sum([len(pg) for pg in self.param_lists])
self.hypers = sd['hypers']
self.state = {p: s for p,s in zip(self.all_params().itemgot(0), sd['state'])}
# %% ../nbs/12_optimizer.ipynb 21
def sgd_step(p, lr, **kwargs):
p.data.add_(p.grad.data, alpha=-lr)
# %% ../nbs/12_optimizer.ipynb 24
def weight_decay(p, lr, wd, do_wd=True, **kwargs):
"Weight decay as decaying `p` with `lr*wd`"
if do_wd and wd!=0: p.data.mul_(1 - lr*wd)
weight_decay.defaults = dict(wd=0.)
# %% ../nbs/12_optimizer.ipynb 26
def l2_reg(p, lr, wd, do_wd=True, **kwargs):
"L2 regularization as adding `wd*p` to `p.grad`"
if do_wd and wd!=0: p.grad.data.add_(p.data, alpha=wd)
l2_reg.defaults = dict(wd=0.)
# %% ../nbs/12_optimizer.ipynb 41
def average_grad(p, mom, dampening=False, grad_avg=None, **kwargs):
"Keeps track of the avg grads of `p` in `state` with `mom`."
if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data)
damp = 1-mom if dampening else 1.
grad_avg.mul_(mom).add_(p.grad.data, alpha=damp)
return {'grad_avg': grad_avg}
average_grad.defaults = dict(mom=0.9)
# %% ../nbs/12_optimizer.ipynb 44
def average_sqr_grad(p, sqr_mom, dampening=True, sqr_avg=None, **kwargs):
if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)
damp = 1-sqr_mom if dampening else 1.
sqr_avg.mul_(sqr_mom).addcmul_(p.grad.data, p.grad.data, value=damp)
return {'sqr_avg': sqr_avg}
average_sqr_grad.defaults = dict(sqr_mom=0.99)
# %% ../nbs/12_optimizer.ipynb 62
def momentum_step(p, lr, grad_avg, **kwargs):
"Step for SGD with momentum with `lr`"
p.data.add_(grad_avg, alpha=-lr)
# %% ../nbs/12_optimizer.ipynb 63
def SGD(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0., # Gradient moving average (β1) coefficient
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization (SGD)
) -> Optimizer:
"A SGD `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
if mom != 0: cbs.append(average_grad)
cbs.append(sgd_step if mom==0 else momentum_step)
return Optimizer(params, cbs, lr=lr, mom=mom, wd=wd)
# %% ../nbs/12_optimizer.ipynb 70
def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs):
"Step for RMSProp with momentum with `lr`"
denom = sqr_avg.sqrt().add_(eps)
p.data.addcdiv_((grad_avg if grad_avg is not None else p.grad), denom, value=-lr)
rms_prop_step.defaults = dict(eps=1e-8)
# %% ../nbs/12_optimizer.ipynb 71
def RMSProp(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0., # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-8, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization (RMSProp)
) -> Optimizer:
"A RMSProp `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += ([average_sqr_grad] if mom==0. else [average_grad, average_sqr_grad])
cbs.append(rms_prop_step)
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, wd=wd)
# %% ../nbs/12_optimizer.ipynb 76
def step_stat(p, step=0, **kwargs):
"Register the number of steps done in `state` for `p`"
step += 1
return {'step' : step}
# %% ../nbs/12_optimizer.ipynb 78
def debias(mom, damp, step): return damp * (1 - mom**step) / (1-mom)
# %% ../nbs/12_optimizer.ipynb 79
def adam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs):
"Step for Adam with `lr` on `p`"
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
p.data.addcdiv_(grad_avg, (sqr_avg/debias2).sqrt() + eps, value = -lr / debias1)
return p
adam_step._defaults = dict(eps=1e-5)
# %% ../nbs/12_optimizer.ipynb 80
def Adam(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-5, # Added for numerical stability
wd:Real=0.01, # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay (AdamW) or L2 regularization (Adam)
) -> Optimizer:
"A Adam/AdamW `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, adam_step]
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 85
def radam_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, beta, **kwargs):
"Step for RAdam with `lr` on `p`"
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
r_inf = 2/(1-sqr_mom) - 1
r = r_inf - 2*step*sqr_mom**step/(1-sqr_mom**step)
if r > 5:
v = math.sqrt(((r-4) * (r-2) * r_inf)/((r_inf-4)*(r_inf-2)*r))
denom = (sqr_avg/debias2).sqrt()
if eps: denom += eps
if beta: denom = F.softplus(denom, beta)
p.data.addcdiv_(grad_avg, denom, value = -lr*v / debias1)
else: p.data.add_(grad_avg, alpha=-lr / debias1)
return p
radam_step._defaults = dict(eps=1e-5)
# %% ../nbs/12_optimizer.ipynb 86
def RAdam(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-5, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
beta:float=0., # Set to enable SAdam
decouple_wd:bool=True # Apply true weight decay (RAdamW) or L2 regularization (RAdam)
) -> Optimizer:
"A RAdam/RAdamW `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, radam_step]
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd, beta=beta)
# %% ../nbs/12_optimizer.ipynb 92
def qhadam_step(p, lr, mom, sqr_mom, sqr_avg, nu_1, nu_2, step, grad_avg, eps, **kwargs):
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
p.data.addcdiv_(((1-nu_1) * p.grad.data) + (nu_1 * (grad_avg / debias1)),
(((1 - nu_2) * (p.grad.data)**2) + (nu_2 * (sqr_avg / debias2))).sqrt() + eps,
value = -lr)
return p
qhadam_step._defaults = dict(eps=1e-8)
# %% ../nbs/12_optimizer.ipynb 93
def QHAdam(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.999, # Gradient moving average (β1) coefficient
sqr_mom:float=0.999, # Gradient squared moving average (β2) coefficient
nu_1:float=0.7, # QH immediate discount factor
nu_2:float=1.0, # QH momentum discount factor
eps:float=1e-8, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True, # Apply true weight decay (QHAdamW) or L2 regularization (QHAdam)
) -> Optimizer:
"A QHAdam/QHAdamW `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), partial(average_sqr_grad, dampening=True), step_stat, qhadam_step]
return Optimizer(params, cbs, lr=lr, nu_1=nu_1, nu_2=nu_2 ,
mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 96
def larc_layer_lr(p, lr, trust_coeff, wd, eps, clip=True, **kwargs):
"Computes the local lr before weight decay is applied"
p_norm,g_norm = torch.norm(p.data),torch.norm(p.grad.data)
local_lr = lr*trust_coeff * (p_norm) / (g_norm + p_norm * wd + eps)
return {'local_lr': min(lr, local_lr) if clip else local_lr}
larc_layer_lr.defaults = dict(trust_coeff=0.02, wd=0., eps=1e-8)
# %% ../nbs/12_optimizer.ipynb 97
def larc_step(p, local_lr, grad_avg=None, **kwargs):
"Step for LARC `local_lr` on `p`"
p.data.add_(p.grad.data if grad_avg is None else grad_avg, alpha = -local_lr)
# %% ../nbs/12_optimizer.ipynb 98
def Larc(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
clip:bool=True, # LARC if clip=True, LARS if clip=False
trust_coeff:float=0.02, # Trust coeffiecnet for calculating layerwise LR
eps:float=1e-8, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization
) -> Optimizer:
"A LARC/LARS `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
if mom!=0.: cbs.append(average_grad)
cbs += [partial(larc_layer_lr, clip=clip), larc_step]
return Optimizer(params, cbs, lr=lr, mom=mom, trust_coeff=trust_coeff, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 103
def lamb_step(p, lr, mom, step, sqr_mom, grad_avg, sqr_avg, eps, **kwargs):
"Step for LAMB with `lr` on `p`"
debias1 = debias(mom, 1-mom, step)
debias2 = debias(sqr_mom, 1-sqr_mom, step)
r1 = p.data.pow(2).mean().sqrt()
step = (grad_avg/debias1) / ((sqr_avg/debias2).sqrt()+eps)
r2 = step.pow(2).mean().sqrt()
q = 1 if r1 == 0 or r2 == 0 else min(r1/r2,10)
p.data.add_(step, alpha = -lr * q)
lamb_step._defaults = dict(eps=1e-6, wd=0.)
# %% ../nbs/12_optimizer.ipynb 104
def Lamb(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.9, # Gradient moving average (β1) coefficient
sqr_mom:float=0.99, # Gradient squared moving average (β2) coefficient
eps:float=1e-5, # Added for numerical stability
wd:Real=0., # Optional weight decay (true or L2)
decouple_wd:bool=True # Apply true weight decay or L2 regularization
) -> Optimizer:
"A LAMB `Optimizer`"
cbs = [weight_decay] if decouple_wd else [l2_reg]
cbs += [partial(average_grad, dampening=True), average_sqr_grad, step_stat, lamb_step]
return Optimizer(params, cbs, lr=lr, mom=mom, sqr_mom=sqr_mom, eps=eps, wd=wd)
# %% ../nbs/12_optimizer.ipynb 109
class Lookahead(Optimizer, GetAttr):
"Wrap `opt` in a lookahead optimizer"
_default='opt'
def __init__(self,
opt:Optimizer, # `Optimizer` to wrap with Lookahead
k:int=6, # How often to conduct Lookahead step
alpha:float=0.5, # Slow weight moving average coefficient
):
store_attr('opt,k,alpha')
self._init_state()
def step(self, closure=None):
if closure is not None: raise NotImplementedError("fastai optimizers currently do not support closure")
if self.slow_weights is None: self._copy_weights()
self.opt.step()
self.count += 1
if self.count%self.k != 0: return
for slow_pg,fast_pg in zip(self.slow_weights,self.param_lists):
for slow_p,fast_p in zip(slow_pg,fast_pg):
slow_p.data.add_(fast_p.data-slow_p.data, alpha=self.alpha)
fast_p.data.copy_(slow_p.data)
def clear_state(self):
self.opt.clear_state()
self._init_state()
def state_dict(self):
state = self.opt.state_dict()
state.update({'count': self.count, 'slow_weights': self.slow_weights})
return state
def load_state_dict(self, sd):
self.count = sd.pop('count')
self.slow_weights = sd.pop('slow_weights')
self.opt.load_state_dict(sd)
def _init_state(self): self.count,self.slow_weights = 0,None
def _copy_weights(self): self.slow_weights = L(L(p.clone().detach() for p in pg) for pg in self.param_lists)
@property
def param_lists(self): return self.opt.param_lists
@param_lists.setter
def param_lists(self, v): self.opt.param_lists = v
# %% ../nbs/12_optimizer.ipynb 111
@delegates(RAdam)
def ranger(
params:Tensor|Iterable, # Model parameters
lr:float|slice, # Default learning rate
mom:float=0.95, # Gradient moving average (β1) coefficient
wd:Real=0.01, # Optional weight decay (true or L2)
eps:float=1e-6, # Added for numerical stability
k:int=6, # How often to conduct Lookahead step
alpha:float=0.5, # Slow weight moving average coefficient
**kwargs
) -> Lookahead:
"Convenience method for `Lookahead` with `RAdam`"
return Lookahead(RAdam(params, lr=lr, mom=mom, wd=wd, eps=eps, **kwargs), k=k, alpha=alpha)
# %% ../nbs/12_optimizer.ipynb 114
def detuplify_pg(d):
res = {}
for k,v in d.items():
if k == 'params': continue
if is_listy(v): res.update(**{f'{k}__{i}': v_ for i,v_ in enumerate(v)})
else: res[k] = v
return res
# %% ../nbs/12_optimizer.ipynb 116
def set_item_pg(pg, k, v):
if '__' not in k: pg[k] = v
else:
name,idx = k.split('__')
pg[name] = tuple(v if i==int(idx) else pg[name][i] for i in range_of(pg[name]))
return pg
# %% ../nbs/12_optimizer.ipynb 118
pytorch_hp_map = {'momentum': 'mom', 'weight_decay': 'wd', 'alpha': 'sqr_mom', 'betas__0': 'mom',
'betas__1': 'sqr_mom'}
# %% ../nbs/12_optimizer.ipynb 119
def _convert_params(o:list) -> list:
splitter = []
for group in o:
if isinstance(group, dict): splitter.append(group)
else: splitter.append({'params':group})
return splitter
# %% ../nbs/12_optimizer.ipynb 120
class OptimWrapper(_BaseOptimizer, GetAttr):
"A wrapper class for existing PyTorch optimizers"
_xtra=['zero_grad', 'step', 'state_dict', 'load_state_dict']
_default='opt'
def __init__(self,
params:Tensor|Iterable=None, # Model parameters. Don't set if using a built optimizer
opt:callable|torch.optim.Optimizer=None, # A torch optimizer constructor, or an already built optimizer
hp_map:dict=None, # A dictionary converting PyTorch optimizer keys to fastai's `Optimizer` keys. Defaults to `pytorch_hp_map`
convert_groups:bool=True, # Convert parameter groups from splitter or pass unaltered to `opt`
**kwargs
):
if params is None and opt is None: raise ValueError("Both `params` and `opt` cannot be None.")
if callable(opt):
if convert_groups:
params = L(params)
convert_groups = isinstance(params[0], (L,list))
self.opt = opt(_convert_params(params), **kwargs) if convert_groups else opt(params, **kwargs)
else:
if params is not None: raise ValueError("Tried using both `params` and a built optimizer. Just pass in `opt`.")
self.opt = opt
if hp_map is None: hp_map = pytorch_hp_map
self.fwd_map = {k: hp_map[k] if k in hp_map else k for k in detuplify_pg(self.opt.param_groups[0]).keys()}
self.bwd_map = {v:k for k,v in self.fwd_map.items()}
self.state = defaultdict(dict, {})
self.frozen_idx = 0
@property
def hypers(self):
return [{self.fwd_map.get(k, k):v for k,v in detuplify_pg(pg).items() if k != 'params'} for pg in self.opt.param_groups]
def _set_hyper(self, k, v):
for pg,v_ in zip(self.opt.param_groups,v): pg = set_item_pg(pg, self.bwd_map[k], v_)
def clear_state(self): self.opt.state = defaultdict(dict, {})
@property
def param_lists(self): return [pg['params'] for pg in self.opt.param_groups]
@param_lists.setter
def param_lists(self, v):
for pg,v_ in zip(self.opt.param_groups,v): pg['params'] = v_