# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/20_interpret.ipynb. # %% ../nbs/20_interpret.ipynb 2 from __future__ import annotations from .data.all import * from .optimizer import * from .learner import * from .tabular.core import * import sklearn.metrics as skm # %% auto 0 __all__ = ['plot_top_losses', 'Interpretation', 'ClassificationInterpretation', 'SegmentationInterpretation'] # %% ../nbs/20_interpret.ipynb 7 @typedispatch def plot_top_losses(x, y, *args, **kwargs): raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") # %% ../nbs/20_interpret.ipynb 8 _all_ = ["plot_top_losses"] # %% ../nbs/20_interpret.ipynb 9 class Interpretation(): "Interpretation base class, can be inherited for task specific Interpretation classes" def __init__(self, learn:Learner, dl:DataLoader, # `DataLoader` to run inference over losses:TensorBase, # Losses calculated from `dl` act=None # Activation function for prediction ): store_attr() def __getitem__(self, idxs): "Return inputs, preds, targs, decoded outputs, and losses at `idxs`" if isinstance(idxs, Tensor): idxs = idxs.tolist() if not is_listy(idxs): idxs = [idxs] items = getattr(self.dl.items, 'iloc', L(self.dl.items))[idxs] tmp_dl = self.learn.dls.test_dl(items, with_labels=True, process=not isinstance(self.dl, TabDataLoader)) inps,preds,targs,decoded = self.learn.get_preds(dl=tmp_dl, with_input=True, with_loss=False, with_decoded=True, act=self.act, reorder=False) return inps, preds, targs, decoded, self.losses[idxs] @classmethod def from_learner(cls, learn, # Model used to create interpretation ds_idx:int=1, # Index of `learn.dls` when `dl` is None dl:DataLoader=None, # `Dataloader` used to make predictions act=None # Override default or set prediction activation function ): "Construct interpretation object from a learner" if dl is None: dl = learn.dls[ds_idx].new(shuffle=False, drop_last=False) _,_,losses = learn.get_preds(dl=dl, with_input=False, with_loss=True, with_decoded=False, with_preds=False, with_targs=False, act=act) return cls(learn, dl, losses, act) def top_losses(self, k:int|None=None, # Return `k` losses, defaults to all largest:bool=True, # Sort losses by largest or smallest items:bool=False # Whether to return input items ): "`k` largest(/smallest) losses and indexes, defaulting to all losses." losses, idx = self.losses.topk(ifnone(k, len(self.losses)), largest=largest) if items: return losses, idx, getattr(self.dl.items, 'iloc', L(self.dl.items))[idx] else: return losses, idx def plot_top_losses(self, k:int|MutableSequence, # Number of losses to plot largest:bool=True, # Sort losses by largest or smallest **kwargs ): "Show `k` largest(/smallest) preds and losses. Implementation based on type dispatch" if is_listy(k) or isinstance(k, range): losses, idx = (o[k] for o in self.top_losses(None, largest)) else: losses, idx = self.top_losses(k, largest) inps, preds, targs, decoded, _ = self[idx] inps, targs, decoded = tuplify(inps), tuplify(targs), tuplify(decoded) x, y, its = self.dl._pre_show_batch(inps+targs, max_n=len(idx)) x1, y1, outs = self.dl._pre_show_batch(inps+decoded, max_n=len(idx)) if its is not None: plot_top_losses(x, y, its, outs.itemgot(slice(len(inps), None)), preds, losses, **kwargs) #TODO: figure out if this is needed #its None means that a batch knows how to show itself as a whole, so we pass x, x1 #else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) def show_results(self, idxs:list, # Indices of predictions and targets **kwargs ): "Show predictions and targets of `idxs`" if isinstance(idxs, Tensor): idxs = idxs.tolist() if not is_listy(idxs): idxs = [idxs] inps, _, targs, decoded, _ = self[idxs] b = tuplify(inps)+tuplify(targs) self.dl.show_results(b, tuplify(decoded), max_n=len(idxs), **kwargs) # %% ../nbs/20_interpret.ipynb 22 class ClassificationInterpretation(Interpretation): "Interpretation methods for classification models." def __init__(self, learn:Learner, dl:DataLoader, # `DataLoader` to run inference over losses:TensorBase, # Losses calculated from `dl` act=None # Activation function for prediction ): super().__init__(learn, dl, losses, act) self.vocab = self.dl.vocab if is_listy(self.vocab): self.vocab = self.vocab[-1] def confusion_matrix(self): "Confusion matrix as an `np.ndarray`." x = torch.arange(0, len(self.vocab)) _,targs,decoded = self.learn.get_preds(dl=self.dl, with_decoded=True, with_preds=True, with_targs=True, act=self.act) d,t = flatten_check(decoded, targs) cm = ((d==x[:,None]) & (t==x[:,None,None])).long().sum(2) return to_np(cm) def plot_confusion_matrix(self, normalize:bool=False, # Whether to normalize occurrences title:str='Confusion matrix', # Title of plot cmap:str="Blues", # Colormap from matplotlib norm_dec:int=2, # Decimal places for normalized occurrences plot_txt:bool=True, # Display occurrence in matrix **kwargs ): "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix() if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(len(self.vocab)) plt.xticks(tick_marks, self.vocab, rotation=90) plt.yticks(tick_marks, self.vocab, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") ax = fig.gca() ax.set_ylim(len(self.vocab)-.5,-.5) plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) def most_confused(self, min_val=1): "Sorted descending largest non-diagonal entries of confusion matrix (actual, predicted, # occurrences" cm = self.confusion_matrix() np.fill_diagonal(cm, 0) res = [(self.vocab[i],self.vocab[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True) def print_classification_report(self): "Print scikit-learn classification report" _,targs,decoded = self.learn.get_preds(dl=self.dl, with_decoded=True, with_preds=True, with_targs=True, act=self.act) d,t = flatten_check(decoded, targs) names = [str(v) for v in self.vocab] print(skm.classification_report(t, d, labels=list(self.vocab.o2i.values()), target_names=names)) # %% ../nbs/20_interpret.ipynb 27 class SegmentationInterpretation(Interpretation): "Interpretation methods for segmentation models." pass