File size: 19,081 Bytes
e568bb4
 
 
 
 
 
6a8cbae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e568bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from some_llm_library import PromptTemplate, StrOutputParser





def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30,lambda_mult= 0.7):
    
    model_name = "Alibaba-NLP/gte-large-en-v1.5"
    model_kwargs = {'device': 'cpu',
                   "trust_remote_code" : 'False'}
    encode_kwargs = {'normalize_embeddings': True}
    embeddings = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )

    

    if os.path.exists(vectorstore_path) and os.listdir(vectorstore_path):
        vectorstore = Chroma(persist_directory=vectorstore_path,embedding_function=embeddings)
        
    else:
        st.write("Vector store doesnt exist and will be created now")
        loader = DirectoryLoader('./data/', glob="./*.txt", loader_cls=TextLoader)
        docs = loader.load()
        
        
        text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap,
        separators=["\n\n \n\n","\n\n\n", "\n\n", r"In \[[0-9]+\]", r"\n+", r"\s+"],
        is_separator_regex = True
    )
        split_docs = text_splitter.split_documents(docs)

        
        vectorstore = Chroma.from_documents(
            documents=split_docs, embedding=embeddings, persist_directory=vectorstore_path
        )
        
    
    retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})

    
    

    return retriever


def retrieval_grader_grader(llm):
    """
    Function to create a grader object using a passed LLM model.
    
    Args:
        llm: The language model to be used for grading.
        
    Returns:
        Callable: A pipeline function that grades relevance based on the LLM.
    """
    
    # Define the class for grading documents inside the function
    class GradeDocuments(BaseModel):
        """Binary score for relevance check on retrieved documents."""
        binary_score: str = Field(
            description="Documents are relevant to the question, 'yes' or 'no'"
        )
    
    # Create the structured LLM grader using the passed LLM
    structured_llm_grader = llm.with_structured_output(GradeDocuments)

    # Define the prompt template
    prompt = PromptTemplate(
        template="""You are a teacher grading a quiz. You will be given: 
        1/ a QUESTION
        2/ A FACT provided by the student
        
        You are grading RELEVANCE RECALL:
        A score of 1 means that ANY of the statements in the FACT are relevant to the QUESTION. 
        A score of 0 means that NONE of the statements in the FACT are relevant to the QUESTION. 
        1 is the highest (best) score. 0 is the lowest score you can give. 
        
        Explain your reasoning in a step-by-step manner. Ensure your reasoning and conclusion are correct. 
        
        Avoid simply stating the correct answer at the outset.
        
        Question: {question} \n
        Fact: \n\n {documents} \n\n
        
        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
        Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.
        """,
        input_variables=['documents', 'question'],
    )
    
    # Combine the prompt with the structured LLM grader
    retrieval_grader = prompt | structured_llm_grader

    # Return the grader object
    return retrieval_grader    


def create_toxicity_checker(llm):
    """
    Function to create a toxicity checker object using a passed LLM model.
    
    Args:
        llm: The language model to be used for toxicity checking.
        
    Returns:
        Callable: A pipeline function that checks for toxicity based on the LLM.
    """
    
    # Define the class for toxicity check inside the function
    class PromtGuard(BaseModel):
        """Binary score for toxicity check on question."""
        score: str = Field(
            description="Is the question toxic, 'yes' or 'no'"
        )
    
    # Create the structured LLM toxicity checker using the passed LLM
    structured_llm_toxicity_checker = llm.with_structured_output(PromtGuard)

    # Define the prompt template
    prompt = PromptTemplate(
        template="""You are a classifier that will score a text based upon supplied criteria. 

        Here is the criteria for scoring:
        
        (1) insults
        
        (2) threats
        
        (3) highly negative comments
        
        (4) any Personally Identifiable Information such as API Keys
        
        Score:
        
        A score of yes means that the text meets ANY of the criteria. 
        
        A score of no means that the text does not meet ALL of the criteria. 
        
        Here is the question: {question}
        
        Give a binary score 'yes' or 'no' to indicate whether the answer is useful to resolve a question.
        If the answer contains repeated phrases, repetition, then return 'no'\n
        Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.""",
        input_variables=["question"],
    )
    
    # Combine the prompt with the structured LLM toxicity checker
    toxicity_grader = prompt | structured_llm_toxicity_checker

    # Return the toxicity checker object
    return toxicity_grader


def grade_question_toxicity(state):
    """
    Grades the question for toxicity.
    
    Args:
        state (dict): The current graph state.
        
    Returns:
        str: 'good' if the question passes the toxicity check, 'bad' otherwise.
    """
    steps = state["steps"]
    steps.append("promt guard")
    score = toxicity_grader.invoke({"question": state["question"]})
    grade = getattr(score, 'score', None)
    
    if grade == "yes":
        return "bad" 
    else:
        return "good"



def create_helpfulness_checker(llm):
    """
    Function to create a helpfulness checker object using a passed LLM model.
    
    Args:
        llm: The language model to be used for checking the helpfulness of answers.
        
    Returns:
        Callable: A pipeline function that checks if the student's answer is helpful.
    """
    
    # Define the class for helpfulness grading inside the function
    class GradeHelpfulness(BaseModel):
        """Binary score for Helpfulness check on answer."""
        score: str = Field(
            description="Is the answer helpfulness, 'yes' or 'no'"
        )
    
    # Create the structured LLM helpfulness checker using the passed LLM
    structured_llm_helpfulness_checker = llm.with_structured_output(GradeHelpfulness)

    # Define the prompt template
    prompt = PromptTemplate(
        template="""You will be given a QUESTION and a STUDENT ANSWER. 

        Here is the grade criteria to follow:

        (1) Ensure the STUDENT ANSWER is concise and relevant to the QUESTION

        (2) Ensure the STUDENT ANSWER helps to answer the QUESTION

        Score:

        A score of yes means that the student's answer meets all of the criteria. This is the highest (best) score. 

        A score of no means that the student's answer does not meet all of the criteria. This is the lowest possible score you can give.

        Explain your reasoning in a step-by-step manner to ensure your reasoning and conclusion are correct. 

        Avoid simply stating the correct answer at the outset.
        
        If the answer contains repeated phrases, repetition, then return 'no'\n
        Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.""",
        input_variables=["generation", "question"],
    )
    
    # Combine the prompt with the structured LLM helpfulness checker
    helpfulness_grader = prompt | structured_llm_helpfulness_checker

    # Return the helpfulness checker object
    return helpfulness_grader


def grade_document_relevance(question: str, document: str):
    input_data = {"documents": documents,"question": question, }
    try:
        result = retrieval_grader.invoke(input_data)
        return result
    except Exception as e:
        print(f"Error parsing result: {e}")
        return {"score": "no"}  # Default to "no" if there is an error

# Example usage
question = "What are the types of agent memory?"
documents = "Agents can have various types of memory, such as short-term memory and long-term memory."
grade = grade_document_relevance(documents,question )
print(grade)  # Expected output: {'value': 'yes'}


def create_hallucination_checker(llm):
    """
    Function to create a hallucination checker object using a passed LLM model.
    
    Args:
        llm: The language model to be used for checking hallucinations in the student's answer.
        
    Returns:
        Callable: A pipeline function that checks if the student's answer contains hallucinations.
    """
    
    # Define the class for hallucination grading inside the function
    class GradeHaliucinations(BaseModel):
        """Binary score for hallucinations check on answer."""
        score: str = Field(
            description="Answer contains hallucinations, 'yes' or 'no'"
        )
    
    # Create the structured LLM hallucination checker using the passed LLM
    structured_llm_haliucinations_checker = llm.with_structured_output(GradeHaliucinations)

    # Define the prompt template
    prompt = PromptTemplate(
        template="""You are a teacher grading a quiz. 

        You will be given FACTS and a STUDENT ANSWER. 

        You are grading STUDENT ANSWER of source FACTS. Focus on correctness of the STUDENT ANSWER and detection of any hallucinations.

        Ensure that the STUDENT ANSWER meets the following criteria: 

        (1) it does not contain information outside of the FACTS

        (2) the STUDENT ANSWER should be fully grounded in and based upon information in the source documents

        Score:

        A score of yes means that the student's answer meets all of the criteria. This is the highest (best) score. 

        A score of no means that the student's answer does not meet all of the criteria. This is the lowest possible score you can give.

        Explain your reasoning in a step-by-step manner to ensure your reasoning and conclusion are correct. 

        Avoid simply stating the correct answer at the outset.
        STUDENT ANSWER: {generation} \n
        Fact: \n\n {documents} \n\n
        
        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
        Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.
        """,
        input_variables=["generation", "documents"],
    )
    
    # Combine the prompt with the structured LLM hallucination checker
    hallucination_grader = prompt | structured_llm_haliucinations_checker

    # Return the hallucination checker object
    return hallucination_grader


def create_question_rewriter(llm):
    """
    Function to create a question rewriter object using a passed LLM model.
    
    Args:
        llm: The language model to be used for rewriting questions.
        
    Returns:
        Callable: A pipeline function that rewrites questions for optimized vector store retrieval.
    """
    
    # Define the prompt template for question rewriting
    re_write_prompt = PromptTemplate(
        template="""You are a question re-writer that converts an input question to a better version that is optimized for vector store retrieval.\n
        Your task is to enhance the question by clarifying the intent, removing any ambiguity, and including specific details to retrieve the most relevant information.\n
        I don't need explanations, only the enhanced question.
        Here is the initial question: \n\n {question}. Improved question with no preamble: \n """,
        input_variables=["question"],
    )
    
    # Combine the prompt with the LLM and output parser
    question_rewriter = re_write_prompt | llm | StrOutputParser()

    # Return the question rewriter object
    return question_rewriter


def transform_query(state):
    """
    Transform the query to produce a better question.

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): Updates question key with a re-phrased question
    """

    print("---TRANSFORM QUERY---")
    question = state["question"]
    documents = state["documents"]
    steps = state["steps"]
    steps.append("question_transformation")

    # Re-write question
    better_question = question_rewriter.invoke({"question": question})
    print(f" Transformed question:  {better_question}")
    return {"documents": documents, "question": better_question}




def format_google_results(google_results):
    formatted_documents = []
    
    # Loop through each organic result and create a Document for it
    for result in google_results['organic']:
        title = result.get('title', 'No title')
        link = result.get('link', 'No link')
        snippet = result.get('snippet', 'No summary available')

        # Create a Document object with similar metadata structure to WikipediaRetriever
        document = Document(
            metadata={
                'title': title,
                'summary': snippet,
                'source': link
            },
            page_content=snippet  # Using the snippet as the page content
        )
        
        formatted_documents.append(document)
    
    return formatted_documents


def grade_generation_v_documents_and_question(state):
    """
    Determines whether the generation is grounded in the document and answers the question.
    """
    print("---CHECK HALLUCINATIONS---")
    question = state["question"]
    documents = state["documents"]
    generation = state["generation"]
    generation_count = state.get("generation_count")  # Use state.get to avoid KeyError
    print(f" generation number:  {generation_count}")
    
    # Grading hallucinations
    score = hallucination_grader.invoke(
        {"documents": documents, "generation": generation}
    )
    grade = getattr(score, 'score', None)

    # Check hallucination
    if grade == "yes":
        print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
        # Check question-answering
        print("---GRADE GENERATION vs QUESTION---")
        score = answer_grader.invoke({"question": question, "generation": generation})
        grade = getattr(score, 'score', None)
        if grade == "yes":
            print("---DECISION: GENERATION ADDRESSES QUESTION---")
            return "useful"
        else:
            print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
            return "not useful"
    else:
        if generation_count > 1:
            print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, TRANSFORM QUERY---")
              # Reset count if it exceeds limit
            return "not useful"
        else:
            print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
             # Increment correctly here
            print(f" generation number after increment:  {state['generation_count']}")
            return "not supported"
    

def ask_question(state):
    """
    Initialize question

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): Question
    """
    steps = state["steps"]
    question = state["question"]
    generations_count = state.get("generations_count", 0) 
    documents = retriever.invoke(question)
    
    steps.append("question_asked")
    return {"question": question, "steps": steps,"generation_count": generations_count}
        
        
def retrieve(state):
    """
    Retrieve documents

    Args:
        state (dict): The current graph state

    Returns:
        state (dict): New key added to state, documents, that contains retrieved documents
    """
    steps = state["steps"]
    question = state["question"]
   
    documents = retriever.invoke(question)
    
    steps.append("retrieve_documents")
    return {"documents": documents, "question": question, "steps": steps}


def generate(state):
    """
    Generate answer
    """
    question = state["question"]
    documents = state["documents"]
    generation = rag_chain.invoke({"documents": documents, "question": question})
    steps = state["steps"]
    steps.append("generate_answer")
    generation_count = state["generation_count"]
    
    generation_count += 1
        
    return {
        "documents": documents,
        "question": question,
        "generation": generation,
        "steps": steps,
        "generation_count": generation_count  # Include generation_count in return
    }


def grade_documents(state):
    question = state["question"]
    documents = state["documents"]
    steps = state["steps"]
    steps.append("grade_document_retrieval")
    
    filtered_docs = []
    web_results_list = []
    search = "No"
    
    for d in documents:
        # Call the grading function
        score = retrieval_grader.invoke({"question": question, "documents": d.page_content})
        print(f"Grader output for document: {score}")  # Detailed debugging output
        
        # Extract the grade
        grade = getattr(score, 'binary_score', None)
        if grade and grade.lower() in ["yes", "true", "1"]:
            filtered_docs.append(d)
        elif len(filtered_docs) < 4:  
            search = "Yes"
            
    # Check the decision-making process
    print(f"Final decision - Perform web search: {search}")
    print(f"Filtered documents count: {len(filtered_docs)}")
    
    return {
        "documents": filtered_docs,
        "question": question,
        "search": search,
        "steps": steps,
    }

def web_search(state):
    question = state["question"]
    documents = state.get("documents")
    steps = state["steps"]
    steps.append("web_search")
    k = 4 - len(documents)
    good_wiki_splits = []
    good_exa_splits = []
    web_results_list = []

    wiki_results = WikipediaRetriever( lang = 'en',top_k_results = 1,doc_content_chars_max = 1000).invoke(question)
       
        
    if k<1:
        combined_documents = documents + wiki_results 
    else:
        web_results = GoogleSerperAPIWrapper(k = k).results(question)
        formatted_documents = format_google_results(web_results)
        for doc in formatted_documents:
            web_results_list.append(doc)
            
        
        combined_documents = documents + wiki_results + web_results_list

    return {"documents": combined_documents, "question": question, "steps": steps}

def decide_to_generate(state):
    """
    Determines whether to generate an answer, or re-generate a question.

    Args:
        state (dict): The current graph state

    Returns:
        str: Binary decision for next node to call
    """
    search = state["search"]
    if search == "Yes":
        return "search"
    else:
        return "generate"