File size: 6,635 Bytes
7f17572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640b40a
7f17572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoConfig, AutoTokenizer
import gradio as gr

os.system("gdown https://drive.google.com/uc?id=1whDb0yL_Kqoyx-sIw0sS5xTfb6r_9nlJ")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def init_params(module_lst):
    for module in module_lst:
        for param in module.parameters():
            if param.dim() > 1:
                torch.nn.init.xavier_uniform_(param)
    return


class Custom_bert(nn.Module):
    def __init__(self, model_dir):
        super().__init__()

        # load base model
        config = AutoConfig.from_pretrained(model_dir)
        config.update({"output_hidden_states": True,
                       "hidden_dropout_prob": 0.0,
                       "layer_norm_eps": 1e-7})

        self.base = AutoModel.from_pretrained(model_dir, config=config)

        dim = self.base.encoder.layer[0].output.dense.bias.shape[0]

        self.dropout = nn.Dropout(p=0.2)
        self.high_dropout = nn.Dropout(p=0.5)

        # weights for weighted layer average
        n_weights = 24
        weights_init = torch.zeros(n_weights).float()
        weights_init.data[:-1] = -3
        self.layer_weights = torch.nn.Parameter(weights_init)

        # attention head
        self.attention = nn.Sequential(
            nn.Linear(1024, 1024),
            nn.Tanh(),
            nn.Linear(1024, 1),
            nn.Softmax(dim=1)
        )
        self.cls = nn.Sequential(
            nn.Linear(dim, 1)
        )
        init_params([self.cls, self.attention])

    def reini_head(self):
        init_params([self.cls, self.attention])
        return

    def forward(self, input_ids, attention_mask):
        base_output = self.base(input_ids=input_ids,
                                attention_mask=attention_mask)

        # weighted average of all encoder outputs
        cls_outputs = torch.stack(
            [self.dropout(layer) for layer in base_output['hidden_states'][-24:]], dim=0
        )
        cls_output = (
                    torch.softmax(self.layer_weights, dim=0).unsqueeze(1).unsqueeze(1).unsqueeze(1) * cls_outputs).sum(
            0)

        # multisample dropout
        logits = torch.mean(
            torch.stack(
                [torch.sum(self.attention(self.high_dropout(cls_output)) * cls_output, dim=1) for _ in range(5)],
                dim=0,
            ),
            dim=0,
        )
        return self.cls(logits)


def get_batches(input, tokenizer, batch_size=128, max_length=256, device='cpu'):
    out = tokenizer(input, return_tensors='pt', max_length=max_length, padding='max_length')
    out['input_ids'], out['attention_mask'] = out['input_ids'].to(device), out['attention_mask'].to(device)
    input_id_split = torch.split(out['input_ids'], max_length, dim=1)
    attention_split = torch.split(out['attention_mask'], max_length, dim=1)

    input_id_batches = []
    attention_batches = []

    i = 0
    input_length = len(input_id_split)

    while i * batch_size < input_length:
        if i * batch_size + batch_size <= input_length:
            input_id_batches.append(list(input_id_split[i * batch_size:(i + 1) * batch_size]))
            attention_batches.append(list(attention_split[i * batch_size:(i + 1) * batch_size]))
        else:
            input_id_batches.append(list(input_id_split[i * batch_size:input_length]))
            attention_batches.append(list(attention_split[i * batch_size:input_length]))
        i += 1

    if input_id_batches[-1][-1].shape[1] < max_length:
        input_id_batches[-1][-1] = F.pad(input_id_batches[-1][-1],
                                         (1, max_length - input_id_batches[-1][-1].shape[1] - 1),
                                         value=0)
        attention_batches[-1][-1] = F.pad(attention_batches[-1][-1],
                                          (1, max_length - attention_batches[-1][-1].shape[1] - 1),
                                          value=1)

    input_id_batches = [torch.cat(batch, dim=0) for batch in input_id_batches]
    attention_batches = [torch.cat(batch, dim=0) for batch in attention_batches]

    return tuple(zip(input_id_batches, attention_batches))


def predict(input, tokenizer, model, batch_size=128, max_length=256, max_val=-4, min_val=3, score=100):
    device = model.base.device
    batches = get_batches(input, tokenizer, batch_size, max_length, device)

    predictions = []

    with torch.no_grad():
        for input_ids, attention_mask in batches:
            pred = model(input_ids, attention_mask)
            pred = score * (pred - min_val) / (max_val - min_val)
            predictions.append(pred)

    predictions = torch.cat(predictions, dim=0)
    mean, std = predictions.mean().cpu().item(), predictions.std().cpu().item()
    mean, std = round(mean, 2), round(std, 2)
    if np.isnan(std):
        return f"The reading difficulty score is {mean}."
    else:
        return f"""The reading difficulty score is {mean} with a standard deviation of {std}.

        \nThe 95% confidence interval of the score is {mean - 2 * std} to {mean + 2 * std}."""


if __name__ == "__main__":
    deberta_loc = "deberta_large_0.pt"
    deberta_tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta-large", model_max_length=256)

    model = Custom_bert("microsoft/deberta-large")
    model.load_state_dict(torch.load(deberta_loc, map_location=torch.device(device)))
    model.eval().to(device)


    description = """

    This tool attempts to estimate how difficult a piece of text is to read by a school child.

    The underlying model has been developed based on expert ranking of text difficulty for students from grade 3 to 12. 

    The score has been scaled to range from zero (very easy) to one hundred (very difficult). 

    Very long passages will be broken up and reported with the average as well as the standard deviation of the difficulty score.

    """

    interface = gr.Interface(fn=lambda x: predict(x, deberta_tokenizer, model, batch_size=4),
                             inputs=gr.inputs.Textbox(lines = 7, label = "Text:",
                                                      placeholder = "Insert text to be scored here."),
                             outputs='text',
                             title = "Reading Difficulty Analyser",
                             description = description)
    interface.launch()