3DTopia-XL / models /dit_crossattn.py
FrozenBurning
single view to 3D init release
81ecb2b
raw
history blame contribute delete
No virus
13.8 kB
# A modified version of DiT (Diffusion Transformer) to support directly dealing with 3D primitives with shape of [batch_size, sequence_length, dim_feat]
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# DiT: https://github.dev/facebookresearch/DiT
# --------------------------------------------------------
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
import numpy as np
import math
from itertools import repeat
import collections.abc
from .attention import MemEffCrossAttention, MemEffAttention
from .utils import TimestepEmbedder, Mlp, modulate
#################################################################################
# Core DiT Model #
#################################################################################
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_size, cross_attn_cond_dim, num_heads, mlp_ratio=4.0, proj_bias=False, gradient_checkpointing=False, **block_kwargs):
super().__init__()
self.gradient_checkpointing = gradient_checkpointing
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.crossattn = MemEffCrossAttention(dim=hidden_size, dim_q=hidden_size, dim_k=cross_attn_cond_dim, dim_v=cross_attn_cond_dim, num_heads=num_heads, qkv_bias=True, proj_bias=proj_bias, attn_drop=0.0, proj_drop=0.0, gradient_checkpointing=gradient_checkpointing, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.attn = MemEffAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=True, proj_bias=proj_bias, attn_drop=0.0, proj_drop=0.0, gradient_checkpointing=gradient_checkpointing, **block_kwargs)
self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 9 * hidden_size, bias=True)
)
def forward(self, x, cross_attn_cond, mod_cond):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, x, cross_attn_cond, mod_cond, use_reentrant=False)
else:
return self._forward(x, cross_attn_cond, mod_cond)
def _forward(self, x, cross_attn_cond, mod_cond):
# cross_attn_cond: conditions that use cross attention to cond, would be image tokens typically [B, L_cond, D_cond]
# mod_cond: conditions that uses modulation to cond, would be timestep typically [B, D_mod]
shift_mca, scale_mca, gate_mca, shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(mod_cond).chunk(9, dim=1)
x = x + gate_mca.unsqueeze(1) * self.crossattn(modulate(self.norm1(x), shift_mca, scale_mca), cross_attn_cond, cross_attn_cond)
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm2(x), shift_msa, scale_msa))
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp))
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, seq_length, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class PointEmbed(nn.Module):
def __init__(self, hidden_dim=48, dim=128):
super().__init__()
assert hidden_dim % 6 == 0
self.embedding_dim = hidden_dim
e = torch.pow(2, torch.arange(self.embedding_dim // 6)).float() * np.pi
e = torch.stack([
torch.cat([e, torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6), e,
torch.zeros(self.embedding_dim // 6)]),
torch.cat([torch.zeros(self.embedding_dim // 6),
torch.zeros(self.embedding_dim // 6), e]),
])
self.register_buffer('basis', e) # 3 x 16
self.mlp = nn.Linear(self.embedding_dim+3, dim)
@staticmethod
def embed(input, basis):
projections = torch.einsum('bnd,de->bne', input, basis)
embeddings = torch.cat([projections.sin(), projections.cos()], dim=2)
return embeddings
def forward(self, input):
# input: B x N x 3
embed = self.mlp(torch.cat([self.embed(input, self.basis), input], dim=2)) # B x N x C
return embed
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
seq_length=2,
in_channels=4,
condition_channels=512,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
cond_drop_prob=0.0,
attn_proj_bias=False,
learn_sigma=True,
gradient_checkpointing=False,
):
super().__init__()
self.gradient_checkpointing = gradient_checkpointing
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.seq_length = seq_length
self.num_heads = num_heads
self.cond_drop_prob = cond_drop_prob
if self.cond_drop_prob > 0:
self.null_cond_embedding = nn.Parameter(torch.randn(condition_channels))
# no need to patchify as prim representation is already patch-wise
self.x_embedder = nn.Linear(in_channels, hidden_size)
# self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, condition_channels, num_heads, mlp_ratio=mlp_ratio, proj_bias=attn_proj_bias, gradient_checkpointing=gradient_checkpointing) for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, seq_length, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# # Initialize (and freeze) pos_embed by sin-cos embedding:
# pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
# self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, y, precision_dtype=torch.float32, enable_amp=False):
"""
Forward pass of DiT.
x: (N, T, D)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
x = self.x_embedder(x)
t = self.t_embedder(t) # (N, D)
if self.cond_drop_prob > 0 and self.training:
drop_mask = torch.rand(y.shape[0], device=y.device) < self.cond_drop_prob
null_cond_embed = self.null_cond_embedding[None, None, :]
y = torch.where(drop_mask[:, None, None], null_cond_embed, y)
with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=enable_amp):
for block in self.blocks:
x = block(x=x, cross_attn_cond=y, mod_cond=t) # (N, T, D)
#TODO: final layer only has timestep conditions, no sure if could be better
x = self.final_layer(x, t) # (N, T, D)
return x
def forward_with_cfg(self, x, t, y, cfg_scale=0.0, precision_dtype=torch.float32, enable_amp=False):
combined = torch.cat([x, x], dim=0)
combined_t = torch.cat([t, t], dim=0)
y_null = self.null_cond_embedding.expand_as(y)
combined_y = torch.cat([y, y_null], dim=0)
model_out = self.forward(combined, combined_t, combined_y, precision_dtype, enable_amp)
eps = model_out
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
return half_eps
class DiTAdditivePosEmb(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
seq_length=2,
in_channels=4,
condition_channels=512,
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
attn_proj_bias=False,
learn_sigma=True,
gradient_checkpointing=False,
):
super().__init__()
self.gradient_checkpointing = gradient_checkpointing
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.seq_length = seq_length
self.num_heads = num_heads
# no need to patchify as prim representation is already patch-wise
self.point_emb = PointEmbed(hidden_dim=48, dim=hidden_size)
self.x_embedder = nn.Linear(in_channels, hidden_size)
# self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbedder(hidden_size)
self.blocks = nn.ModuleList([
DiTBlock(hidden_size, condition_channels, num_heads, mlp_ratio=mlp_ratio, proj_bias=attn_proj_bias, gradient_checkpointing=gradient_checkpointing) for _ in range(depth)
])
self.final_layer = FinalLayer(hidden_size, seq_length, self.out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# # Initialize (and freeze) pos_embed by sin-cos embedding:
# pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5))
# self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
def forward(self, x, t, y, precision_dtype=torch.float32, enable_amp=False):
"""
Forward pass of DiT.
x: (N, T, D)
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of class labels
"""
point = x[:, :, 1:4]
point_emb = self.point_emb(point)
x = self.x_embedder(x) + point_emb
t = self.t_embedder(t) # (N, D)
with torch.autocast(device_type='cuda', dtype=precision_dtype, enabled=enable_amp):
for block in self.blocks:
x = block(x=x, cross_attn_cond=y, mod_cond=t) # (N, T, D)
#TODO: final layer only has timestep conditions, no sure if could be better
x = self.final_layer(x, t) # (N, T, D)
return x