ymzhang319's picture
init
7f2690b
raw
history blame
No virus
10.4 kB
import torch
import torchaudio
import torchaudio.functional
from torchvision import transforms
import torchvision.transforms.functional as F
import torch.nn as nn
from PIL import Image
import numpy as np
import math
import random
class ResizeShortSide(object):
def __init__(self, size):
super().__init__()
self.size = size
def __call__(self, x):
'''
x must be PIL.Image
'''
w, h = x.size
short_side = min(w, h)
w_target = int((w / short_side) * self.size)
h_target = int((h / short_side) * self.size)
return x.resize((w_target, h_target))
class RandomResizedCrop3D(nn.Module):
"""Crop the given series of images to random size and aspect ratio.
The image can be a PIL Images or a Tensor, in which case it is expected
to have [N, ..., H, W] shape, where ... means an arbitrary number of leading dimensions
A crop of random size (default: of 0.08 to 1.0) of the original size and a random
aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
is finally resized to given size.
This is popularly used to train the Inception networks.
Args:
size (int or sequence): expected output size of each edge. If size is an
int instead of sequence like (h, w), a square output size ``(size, size)`` is
made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
scale (tuple of float): range of size of the origin size cropped
ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
interpolation (int): Desired interpolation enum defined by `filters`_.
Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
and ``PIL.Image.BICUBIC`` are supported.
"""
def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=transforms.InterpolationMode.BILINEAR):
super().__init__()
if isinstance(size, tuple) and len(size) == 2:
self.size = size
else:
self.size = (size, size)
self.interpolation = interpolation
self.scale = scale
self.ratio = ratio
@staticmethod
def get_params(img, scale, ratio):
"""Get parameters for ``crop`` for a random sized crop.
Args:
img (PIL Image or Tensor): Input image.
scale (list): range of scale of the origin size cropped
ratio (list): range of aspect ratio of the origin aspect ratio cropped
Returns:
tuple: params (i, j, h, w) to be passed to ``crop`` for a random
sized crop.
"""
width, height = img.size
area = height * width
for _ in range(10):
target_area = area * \
torch.empty(1).uniform_(scale[0], scale[1]).item()
log_ratio = torch.log(torch.tensor(ratio))
aspect_ratio = torch.exp(
torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
).item()
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if 0 < w <= width and 0 < h <= height:
i = torch.randint(0, height - h + 1, size=(1,)).item()
j = torch.randint(0, width - w + 1, size=(1,)).item()
return i, j, h, w
# Fallback to central crop
in_ratio = float(width) / float(height)
if in_ratio < min(ratio):
w = width
h = int(round(w / min(ratio)))
elif in_ratio > max(ratio):
h = height
w = int(round(h * max(ratio)))
else: # whole image
w = width
h = height
i = (height - h) // 2
j = (width - w) // 2
return i, j, h, w
def forward(self, imgs):
"""
Args:
img (PIL Image or Tensor): Image to be cropped and resized.
Returns:
PIL Image or Tensor: Randomly cropped and resized image.
"""
i, j, h, w = self.get_params(imgs[0], self.scale, self.ratio)
return [F.resized_crop(img, i, j, h, w, self.size, self.interpolation) for img in imgs]
class Resize3D(object):
def __init__(self, size):
super().__init__()
self.size = size
def __call__(self, imgs):
'''
x must be PIL.Image
'''
return [x.resize((self.size, self.size)) for x in imgs]
class RandomHorizontalFlip3D(object):
def __init__(self, p=0.5):
super().__init__()
self.p = p
def __call__(self, imgs):
'''
x must be PIL.Image
'''
if np.random.rand() < self.p:
return [x.transpose(Image.FLIP_LEFT_RIGHT) for x in imgs]
else:
return imgs
class ColorJitter3D(torch.nn.Module):
"""Randomly change the brightness, contrast and saturation of an image.
Args:
brightness (float or tuple of float (min, max)): How much to jitter brightness.
brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast (float or tuple of float (min, max)): How much to jitter contrast.
contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation (float or tuple of float (min, max)): How much to jitter saturation.
saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue (float or tuple of float (min, max)): How much to jitter hue.
hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
"""
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
super().__init__()
self.brightness = (1-brightness, 1+brightness)
self.contrast = (1-contrast, 1+contrast)
self.saturation = (1-saturation, 1+saturation)
self.hue = (0-hue, 0+hue)
@staticmethod
def get_params(brightness, contrast, saturation, hue):
"""Get a randomized transform to be applied on image.
Arguments are same as that of __init__.
Returns:
Transform which randomly adjusts brightness, contrast and
saturation in a random order.
"""
tfs = []
if brightness is not None:
brightness_factor = random.uniform(brightness[0], brightness[1])
tfs.append(transforms.Lambda(
lambda img: F.adjust_brightness(img, brightness_factor)))
if contrast is not None:
contrast_factor = random.uniform(contrast[0], contrast[1])
tfs.append(transforms.Lambda(
lambda img: F.adjust_contrast(img, contrast_factor)))
if saturation is not None:
saturation_factor = random.uniform(saturation[0], saturation[1])
tfs.append(transforms.Lambda(
lambda img: F.adjust_saturation(img, saturation_factor)))
if hue is not None:
hue_factor = random.uniform(hue[0], hue[1])
tfs.append(transforms.Lambda(
lambda img: F.adjust_hue(img, hue_factor)))
random.shuffle(tfs)
transform = transforms.Compose(tfs)
return transform
def forward(self, imgs):
"""
Args:
img (PIL Image or Tensor): Input image.
Returns:
PIL Image or Tensor: Color jittered image.
"""
transform = self.get_params(
self.brightness, self.contrast, self.saturation, self.hue)
return [transform(img) for img in imgs]
class ToTensor3D(object):
def __init__(self):
super().__init__()
def __call__(self, imgs):
'''
x must be PIL.Image
'''
return [F.to_tensor(img) for img in imgs]
class Normalize3D(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], inplace=False):
super().__init__()
self.mean = mean
self.std = std
self.inplace = inplace
def __call__(self, imgs):
'''
x must be PIL.Image
'''
return [F.normalize(img, self.mean, self.std, self.inplace) for img in imgs]
class CenterCrop3D(object):
def __init__(self, size):
super().__init__()
self.size = size
def __call__(self, imgs):
'''
x must be PIL.Image
'''
return [F.center_crop(img, self.size) for img in imgs]
class FrequencyMasking(object):
def __init__(self, freq_mask_param: int, iid_masks: bool = False):
super().__init__()
self.masking = torchaudio.transforms.FrequencyMasking(freq_mask_param, iid_masks)
def __call__(self, item):
if 'cond_image' in item.keys():
batched_spec = torch.stack(
[torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0
)[:, None] # (2, 1, H, W)
masked = self.masking(batched_spec).numpy()
item['image'] = masked[0, 0]
item['cond_image'] = masked[1, 0]
elif 'image' in item.keys():
inp = torch.tensor(item['image'])
item['image'] = self.masking(inp).numpy()
else:
raise NotImplementedError()
return item
class TimeMasking(object):
def __init__(self, time_mask_param: int, iid_masks: bool = False):
super().__init__()
self.masking = torchaudio.transforms.TimeMasking(time_mask_param, iid_masks)
def __call__(self, item):
if 'cond_image' in item.keys():
batched_spec = torch.stack(
[torch.tensor(item['image']), torch.tensor(item['cond_image'])], dim=0
)[:, None] # (2, 1, H, W)
masked = self.masking(batched_spec).numpy()
item['image'] = masked[0, 0]
item['cond_image'] = masked[1, 0]
elif 'image' in item.keys():
inp = torch.tensor(item['image'])
item['image'] = self.masking(inp).numpy()
else:
raise NotImplementedError()
return item