File size: 11,829 Bytes
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
from functools import partial
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint

from timm.models.layers import drop_path, to_2tuple, trunc_normal_

from ..builder import BACKBONES
from .base_backbone import BaseBackbone
from einops import repeat

class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self):
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.dim = dim

        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads

        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
                 drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm, attn_head_dim=None
                 ):
        super().__init__()

        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim
        )

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2)
        self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio))
        self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1]))
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio),
                              padding=4 + 2 * (ratio // 2 - 1))

    def forward(self, x, **kwargs):
        B, C, H, W = x.shape
        x = self.proj(x)
        Hp, Wp = x.shape[2], x.shape[3]

        x = x.flatten(2).transpose(1, 2)
        return x, (Hp, Wp)


class HybridEmbed(nn.Module):
    """ CNN Feature Map Embedding
    Extract feature map from CNN, flatten, project to embedding dim.
    """

    def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
        super().__init__()
        assert isinstance(backbone, nn.Module)
        img_size = to_2tuple(img_size)
        self.img_size = img_size
        self.backbone = backbone
        if feature_size is None:
            with torch.no_grad():
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            feature_dim = self.backbone.feature_info.channels()[-1]
        self.num_patches = feature_size[0] * feature_size[1]
        self.proj = nn.Linear(feature_dim, embed_dim)

    def forward(self, x):
        x = self.backbone(x)[-1]
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x


@BACKBONES.register_module()
class ViT(BaseBackbone):

    def __init__(self,
                 img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False,
                 frozen_stages=-1, ratio=1, last_norm=True,
                 patch_padding='pad', freeze_attn=False, freeze_ffn=False, task_tokens_num=1+1+2+2+25
                 ):
        # Protect mutable default arguments
        super(ViT, self).__init__()
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.frozen_stages = frozen_stages
        self.use_checkpoint = use_checkpoint
        self.patch_padding = patch_padding
        self.freeze_attn = freeze_attn
        self.freeze_ffn = freeze_ffn
        self.depth = depth
        self.task_tokens_num = task_tokens_num

        if hybrid_backbone is not None:
            self.patch_embed = HybridEmbed(
                hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
        else:
            self.patch_embed = PatchEmbed(
                img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio)
        num_patches = self.patch_embed.num_patches

        # task tokens for HPS estimation
        self.task_tokens = nn.Parameter(torch.zeros(1, task_tokens_num, embed_dim))
        trunc_normal_(self.task_tokens, std=.02)

        # since the pretraining model has class token
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
            )
            for i in range(depth)])

        self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity()

        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)

        self._freeze_stages()

    def _freeze_stages(self):
        """Freeze parameters."""
        if self.frozen_stages >= 0:
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = self.blocks[i]
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

        if self.freeze_attn:
            for i in range(0, self.depth):
                m = self.blocks[i]
                m.attn.eval()
                m.norm1.eval()
                for param in m.attn.parameters():
                    param.requires_grad = False
                for param in m.norm1.parameters():
                    param.requires_grad = False

        if self.freeze_ffn:
            self.pos_embed.requires_grad = False
            self.patch_embed.eval()
            for param in self.patch_embed.parameters():
                param.requires_grad = False
            for i in range(0, self.depth):
                m = self.blocks[i]
                m.mlp.eval()
                m.norm2.eval()
                for param in m.mlp.parameters():
                    param.requires_grad = False
                for param in m.norm2.parameters():
                    param.requires_grad = False

    def init_weights(self, pretrained=None):
        """Initialize the weights in backbone.
        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        super().init_weights(pretrained, patch_padding=self.patch_padding)

        if pretrained is None:
            def _init_weights(m):
                if isinstance(m, nn.Linear):
                    trunc_normal_(m.weight, std=.02)
                    if isinstance(m, nn.Linear) and m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.LayerNorm):
                    nn.init.constant_(m.bias, 0)
                    nn.init.constant_(m.weight, 1.0)

            self.apply(_init_weights)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward_features(self, x):
        B, C, H, W = x.shape
        x, (Hp, Wp) = self.patch_embed(x)
        task_tokens = repeat(self.task_tokens, '() n d -> b n d', b=B)
        if self.pos_embed is not None:
            # fit for multiple GPU training
            # since the first element for pos embed (sin-cos manner) is zero, it will cause no difference
            x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1]

        x = torch.cat((task_tokens, x), dim=1)

        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)

        x = self.last_norm(x)

        task_tokens = x[:, :self.task_tokens_num]  # [N,J,C]
        # task_tokens = torch.cat(task_tokens_, dim=-1)
        xp = x[:, self.task_tokens_num:]  # [N,Hp*Wp,C]

        xp = xp.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous()

        return xp, task_tokens

    def forward(self, x):
        x = self.forward_features(x)
        return x

    def train(self, mode=True):
        """Convert the model into training mode."""
        super().train(mode)
        self._freeze_stages()