# Copyright 2022 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run evaluation.""" import collections import importlib import io import os from absl import app from absl import flags import flax import jax.numpy as jnp import ml_collections import numpy as np from PIL import Image import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_enum( 'task', 'Denoising', ['Denoising', 'Deblurring', 'Deraining', 'Dehazing', 'Enhancement'], 'Task to run.') flags.DEFINE_string('ckpt_path', '', 'Path to checkpoint.') flags.DEFINE_string('input_dir', '', 'Input dir to the test set.') flags.DEFINE_string('output_dir', '', 'Output dir to store predicted images.') flags.DEFINE_boolean('has_target', True, 'Whether has corresponding gt image.') flags.DEFINE_boolean('save_images', True, 'Dump predicted images.') flags.DEFINE_boolean('geometric_ensemble', False, 'Whether use ensemble infernce.') _MODEL_FILENAME = 'maxim' _MODEL_VARIANT_DICT = { 'Denoising': 'S-3', 'Deblurring': 'S-3', 'Deraining': 'S-2', 'Dehazing': 'S-2', 'Enhancement': 'S-2', } _MODEL_CONFIGS = { 'variant': '', 'dropout_rate': 0.0, 'num_outputs': 3, 'use_bias': True, 'num_supervision_scales': 3, } def recover_tree(keys, values): """Recovers a tree as a nested dict from flat names and values. This function is useful to analyze checkpoints that are saved by our programs without need to access the exact source code of the experiment. In particular, it can be used to extract an reuse various subtrees of the scheckpoint, e.g. subtree of parameters. Args: keys: a list of keys, where '/' is used as separator between nodes. values: a list of leaf values. Returns: A nested tree-like dict. """ tree = {} sub_trees = collections.defaultdict(list) for k, v in zip(keys, values): if '/' not in k: tree[k] = v else: k_left, k_right = k.split('/', 1) sub_trees[k_left].append((k_right, v)) for k, kv_pairs in sub_trees.items(): k_subtree, v_subtree = zip(*kv_pairs) tree[k] = recover_tree(k_subtree, v_subtree) return tree def mod_padding_symmetric(image, factor=64): """Padding the image to be divided by factor.""" height, width = image.shape[0], image.shape[1] height_pad, width_pad = ((height + factor) // factor) * factor, ( (width + factor) // factor) * factor padh = height_pad - height if height % factor != 0 else 0 padw = width_pad - width if width % factor != 0 else 0 image = jnp.pad( image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], mode='reflect') return image def get_params(ckpt_path): """Get params checkpoint.""" with tf.io.gfile.GFile(ckpt_path, 'rb') as f: data = f.read() values = np.load(io.BytesIO(data)) params = recover_tree(*zip(*values.items())) params = params['opt']['target'] return params def calculate_psnr(img1, img2, crop_border, test_y_channel=False): """Calculate PSNR (Peak Signal-to-Noise Ratio). Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio Args: img1 (ndarray): Images with range [0, 255]. img2 (ndarray): Images with range [0, 255]. crop_border (int): Cropped pixels in each edge of an image. These pixels are not involved in the PSNR calculation. test_y_channel (bool): Test on Y channel of YCbCr. Default: False. Returns: float: psnr result. """ assert img1.shape == img2.shape, ( f'Image shapes are differnet: {img1.shape}, {img2.shape}.') img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) if crop_border != 0: img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] if test_y_channel: img1 = to_y_channel(img1) img2 = to_y_channel(img2) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20. * np.log10(255. / np.sqrt(mse)) def _convert_input_type_range(img): """Convert the type and range of the input image. It converts the input image to np.float32 type and range of [0, 1]. It is mainly used for pre-processing the input image in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with type of np.float32 and range of [0, 1]. """ img_type = img.dtype img = img.astype(np.float32) if img_type == np.float32: pass elif img_type == np.uint8: img /= 255. else: raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') return img def _convert_output_type_range(img, dst_type): """Convert the type and range of the image according to dst_type. It converts the image to desired type and range. If `dst_type` is np.uint8, images will be converted to np.uint8 type with range [0, 255]. If `dst_type` is np.float32, it converts the image to np.float32 type with range [0, 1]. It is mainly used for post-processing images in colorspace convertion functions such as rgb2ycbcr and ycbcr2rgb. Args: img (ndarray): The image to be converted with np.float32 type and range [0, 255]. dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it converts the image to np.uint8 type with range [0, 255]. If dst_type is np.float32, it converts the image to np.float32 type with range [0, 1]. Returns: (ndarray): The converted image with desired type and range. """ if dst_type not in (np.uint8, np.float32): raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') if dst_type == np.uint8: img = img.round() else: img /= 255. return img.astype(dst_type) def rgb2ycbcr(img, y_only=False): """Convert a RGB image to YCbCr image. This function produces the same results as Matlab's `rgb2ycbcr` function. It implements the ITU-R BT.601 conversion for standard-definition television. See more details in https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`. In OpenCV, it implements a JPEG conversion. See more details in https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. Args: img (ndarray): The input image. It accepts: 1. np.uint8 type with range [0, 255]; 2. np.float32 type with range [0, 1]. y_only (bool): Whether to only return Y channel. Default: False. Returns: ndarray: The converted YCbCr image. The output image has the same type and range as input image. """ img_type = img.dtype img = _convert_input_type_range(img) if y_only: out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0 else: out_img = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [16, 128, 128] out_img = _convert_output_type_range(out_img, img_type) return out_img def to_y_channel(img): """Change to Y channel of YCbCr. Args: img (ndarray): Images with range [0, 255]. Returns: (ndarray): Images with range [0, 255] (float type) without round. """ img = img.astype(np.float32) / 255. if img.ndim == 3 and img.shape[2] == 3: img = rgb2ycbcr(img, y_only=True) img = img[..., None] return img * 255. def augment_image(image, times=8): """Geometric augmentation.""" if times == 4: # only rotate image images = [] for k in range(0, 4): images.append(np.rot90(image, k=k)) images = np.stack(images, axis=0) elif times == 8: # roate and flip image images = [] for k in range(0, 4): images.append(np.rot90(image, k=k)) image = np.fliplr(image) for k in range(0, 4): images.append(np.rot90(image, k=k)) images = np.stack(images, axis=0) else: raise Exception(f'Error times: {times}') return images def deaugment_image(images, times=8): """Reverse the geometric augmentation.""" if times == 4: # only rotate image image = [] for k in range(0, 4): image.append(np.rot90(images[k], k=4-k)) image = np.stack(image, axis=0) image = np.mean(image, axis=0) elif times == 8: # roate and flip image image = [] for k in range(0, 4): image.append(np.rot90(images[k], k=4-k)) for k in range(0, 4): image.append(np.fliplr(np.rot90(images[4+k], k=4-k))) image = np.mean(image, axis=0) else: raise Exception(f'Error times: {times}') return image def is_image_file(filename): """Check if it is an valid image file by extension.""" return any( filename.endswith(extension) for extension in ['jpeg', 'JPEG', 'jpg', 'png', 'JPG', 'PNG', 'gif']) def save_img(img, pth): """Save an image to disk. Args: img: jnp.ndarry, [height, width, channels], img will be clipped to [0, 1] before saved to pth. pth: string, path to save the image to. """ Image.fromarray(np.array( (np.clip(img, 0., 1.) * 255.).astype(jnp.uint8))).save(pth, 'PNG') def make_shape_even(image): """Pad the image to have even shapes.""" height, width = image.shape[0], image.shape[1] padh = 1 if height % 2 != 0 else 0 padw = 1 if width % 2 != 0 else 0 image = jnp.pad(image, [(0, padh), (0, padw), (0, 0)], mode='reflect') return image def main(_): params = get_params(FLAGS.ckpt_path) if FLAGS.save_images: os.makedirs(FLAGS.output_dir, exist_ok=True) # sorted is important for continuning an inference job. filepath = sorted(os.listdir(os.path.join(FLAGS.input_dir, 'input'))) input_filenames = [ os.path.join(FLAGS.input_dir, 'input', x) for x in filepath if is_image_file(x) ] if FLAGS.has_target: target_filenames = [ os.path.join(FLAGS.input_dir, 'target', x) for x in filepath if is_image_file(x) ] num_images = len(input_filenames) model_mod = importlib.import_module(f'maxim.models.{_MODEL_FILENAME}') model_configs = ml_collections.ConfigDict(_MODEL_CONFIGS) model_configs.variant = _MODEL_VARIANT_DICT[FLAGS.task] model = model_mod.Model(**model_configs) psnr_all = [] def _process_file(i): print(f'Processing {i + 1} / {num_images}...') input_file = input_filenames[i] input_img = np.asarray(Image.open(input_file).convert('RGB'), np.float32) / 255. if FLAGS.has_target: target_file = target_filenames[i] target_img = np.asarray(Image.open(target_file).convert('RGB'), np.float32) / 255. # Padding images to have even shapes height, width = input_img.shape[0], input_img.shape[1] input_img = make_shape_even(input_img) height_even, width_even = input_img.shape[0], input_img.shape[1] # padding images to be multiplies of 64 input_img = mod_padding_symmetric(input_img, factor=64) if FLAGS.geometric_ensemble: input_img = augment_image(input_img, FLAGS.ensemble_times) else: input_img = np.expand_dims(input_img, axis=0) # handle multi-stage outputs, obtain the last scale output of last stage preds = model.apply({'params': flax.core.freeze(params)}, input_img) if isinstance(preds, list): preds = preds[-1] if isinstance(preds, list): preds = preds[-1] # De-ensemble by averaging inferenced results. if FLAGS.geometric_ensemble: preds = deaugment_image(preds, FLAGS.ensemble_times) else: preds = np.array(preds[0], np.float32) # unpad images to get the original resolution new_height, new_width = preds.shape[0], preds.shape[1] h_start = new_height // 2 - height_even // 2 h_end = h_start + height w_start = new_width // 2 - width_even // 2 w_end = w_start + width preds = preds[h_start:h_end, w_start:w_end, :] # print PSNR scores if FLAGS.has_target: psnr = calculate_psnr( target_img * 255., preds * 255., crop_border=0, test_y_channel=False) print(f'{i}th image: psnr = {psnr:.4f}') else: psnr = -1 # save files basename = os.path.basename(input_file) if FLAGS.save_images: save_pth = os.path.join(FLAGS.output_dir, basename) save_img(preds, save_pth) return psnr for i in range(num_images): psnr = _process_file(i) psnr_all.append(psnr) psnr_all = np.asarray(psnr_all) print(f'average psnr = {np.sum(psnr_all)/num_images:.4f}') print(f'std psnr = {np.std(psnr_all):.4f}') if __name__ == '__main__': app.run(main)