File size: 12,733 Bytes
212111c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import torch
import torch.nn as nn

from ..registry import registry
from .modeling_utils import ProteinConfig
from .modeling_utils import ProteinModel

URL_PREFIX = "https://s3.amazonaws.com/proteindata/pytorch-models/"
TRROSETTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xaa': URL_PREFIX + "trRosetta-xaa-pytorch_model.bin",
    'xab': URL_PREFIX + "trRosetta-xab-pytorch_model.bin",
    'xac': URL_PREFIX + "trRosetta-xac-pytorch_model.bin",
    'xad': URL_PREFIX + "trRosetta-xad-pytorch_model.bin",
    'xae': URL_PREFIX + "trRosetta-xae-pytorch_model.bin",
}
TRROSETTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xaa': URL_PREFIX + "trRosetta-xaa-config.json",
    'xab': URL_PREFIX + "trRosetta-xab-config.json",
    'xac': URL_PREFIX + "trRosetta-xac-config.json",
    'xad': URL_PREFIX + "trRosetta-xad-config.json",
    'xae': URL_PREFIX + "trRosetta-xae-config.json",
}


class TRRosettaConfig(ProteinConfig):

    pretrained_config_archive_map = TRROSETTA_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 num_features: int = 64,
                 kernel_size: int = 3,
                 num_layers: int = 61,
                 dropout: float = 0.15,
                 msa_cutoff: float = 0.8,
                 penalty_coeff: float = 4.5,
                 initializer_range: float = 0.02,
                 **kwargs):
        super().__init__(**kwargs)
        self.num_features = num_features
        self.kernel_size = kernel_size
        self.num_layers = num_layers
        self.dropout = dropout
        self.msa_cutoff = msa_cutoff
        self.penalty_coeff = penalty_coeff
        self.initializer_range = initializer_range


class MSAFeatureExtractor(nn.Module):

    def __init__(self, config: TRRosettaConfig):
        super().__init__()
        self.msa_cutoff = config.msa_cutoff
        self.penalty_coeff = config.penalty_coeff

    def forward(self, msa1hot):
        # Convert to float, then potentially back to half
        # These transforms aren't well suited to half-precision
        initial_type = msa1hot.dtype

        msa1hot = msa1hot.float()
        seqlen = msa1hot.size(2)

        weights = self.reweight(msa1hot)
        features_1d = self.extract_features_1d(msa1hot, weights)
        features_2d = self.extract_features_2d(msa1hot, weights)

        left = features_1d.unsqueeze(2).repeat(1, 1, seqlen, 1)
        right = features_1d.unsqueeze(1).repeat(1, seqlen, 1, 1)
        features = torch.cat((left, right, features_2d), -1)
        features = features.type(initial_type)
        features = features.permute(0, 3, 1, 2)
        features = features.contiguous()
        return features

    def reweight(self, msa1hot, eps=1e-9):
        # Reweight
        seqlen = msa1hot.size(2)
        id_min = seqlen * self.msa_cutoff
        id_mtx = torch.stack([torch.tensordot(el, el, [[1, 2], [1, 2]]) for el in msa1hot], 0)
        id_mask = id_mtx > id_min
        weights = 1.0 / (id_mask.type_as(msa1hot).sum(-1) + eps)
        return weights

    def extract_features_1d(self, msa1hot, weights):
        # 1D Features
        f1d_seq = msa1hot[:, 0, :, :20]
        batch_size = msa1hot.size(0)
        seqlen = msa1hot.size(2)

        # msa2pssm
        beff = weights.sum()
        f_i = (weights[:, :, None, None] * msa1hot).sum(1) / beff + 1e-9
        h_i = (-f_i * f_i.log()).sum(2, keepdims=True)
        f1d_pssm = torch.cat((f_i, h_i), dim=2)
        f1d = torch.cat((f1d_seq, f1d_pssm), dim=2)
        f1d = f1d.view(batch_size, seqlen, 42)
        return f1d

    def extract_features_2d(self, msa1hot, weights):
        # 2D Features
        batch_size = msa1hot.size(0)
        num_alignments = msa1hot.size(1)
        seqlen = msa1hot.size(2)
        num_symbols = 21

        if num_alignments == 1:
            # No alignments, predict from sequence alone
            f2d_dca = torch.zeros(
                batch_size, seqlen, seqlen, 442,
                dtype=torch.float,
                device=msa1hot.device)
            return f2d_dca

        # compute fast_dca
        # covariance
        x = msa1hot.view(batch_size, num_alignments, seqlen * num_symbols)
        num_points = weights.sum(1) - weights.mean(1).sqrt()
        mean = (x * weights.unsqueeze(2)).sum(1, keepdims=True) / num_points[:, None, None]
        x = (x - mean) * weights[:, :, None].sqrt()
        cov = torch.matmul(x.transpose(-1, -2), x) / num_points[:, None, None]

        # inverse covariance
        reg = torch.eye(seqlen * num_symbols,
                        device=weights.device,
                        dtype=weights.dtype)[None]
        reg = reg * self.penalty_coeff / weights.sum(1, keepdims=True).sqrt().unsqueeze(2)
        cov_reg = cov + reg
        inv_cov = torch.stack([torch.inverse(cr) for cr in cov_reg.unbind(0)], 0)

        x1 = inv_cov.view(batch_size, seqlen, num_symbols, seqlen, num_symbols)
        x2 = x1.permute(0, 1, 3, 2, 4)
        features = x2.reshape(batch_size, seqlen, seqlen, num_symbols * num_symbols)

        x3 = (x1[:, :, :-1, :, :-1] ** 2).sum((2, 4)).sqrt() * (
            1 - torch.eye(seqlen, device=weights.device, dtype=weights.dtype)[None])
        apc = x3.sum(1, keepdims=True) * x3.sum(2, keepdims=True) / x3.sum(
            (1, 2), keepdims=True)
        contacts = (x3 - apc) * (1 - torch.eye(
            seqlen, device=x3.device, dtype=x3.dtype).unsqueeze(0))

        f2d_dca = torch.cat([features, contacts[:, :, :, None]], axis=3)
        return f2d_dca

    @property
    def feature_size(self) -> int:
        return 526


class DilatedResidualBlock(nn.Module):

    def __init__(self, num_features: int, kernel_size: int, dilation: int, dropout: float):
        super().__init__()
        padding = self._get_padding(kernel_size, dilation)
        self.conv1 = nn.Conv2d(
            num_features, num_features, kernel_size, padding=padding, dilation=dilation)
        self.norm1 = nn.InstanceNorm2d(num_features, affine=True, eps=1e-6)
        self.actv1 = nn.ELU(inplace=True)
        self.dropout = nn.Dropout(dropout)
        self.conv2 = nn.Conv2d(
            num_features, num_features, kernel_size, padding=padding, dilation=dilation)
        self.norm2 = nn.InstanceNorm2d(num_features, affine=True, eps=1e-6)
        self.actv2 = nn.ELU(inplace=True)
        self.apply(self._init_weights)
        nn.init.constant_(self.norm2.weight, 0)

    def _get_padding(self, kernel_size: int, dilation: int) -> int:
        return (kernel_size + (kernel_size - 1) * (dilation - 1) - 1) // 2

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, nn.Conv2d):
            nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
            if module.bias is not None:
                module.bias.data.zero_()

        # elif isinstance(module, DilatedResidualBlock):
            # nn.init.constant_(module.norm2.weight, 0)

    def forward(self, features):
        shortcut = features
        features = self.conv1(features)
        features = self.norm1(features)
        features = self.actv1(features)
        features = self.dropout(features)
        features = self.conv2(features)
        features = self.norm2(features)
        features = self.actv2(features + shortcut)
        return features


class TRRosettaAbstractModel(ProteinModel):

    config_class = TRRosettaConfig
    base_model_prefix = 'trrosetta'
    pretrained_model_archive_map = TRROSETTA_PRETRAINED_MODEL_ARCHIVE_MAP

    def __init__(self, config: TRRosettaConfig):
        super().__init__(config)

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Conv2d):
            nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, DilatedResidualBlock):
            nn.init.constant_(module.norm2.weight, 0)


class TRRosettaPredictor(TRRosettaAbstractModel):

    def __init__(self, config: TRRosettaConfig):
        super().__init__(config)
        layers = [
            nn.Conv2d(526, config.num_features, 1),
            nn.InstanceNorm2d(config.num_features, affine=True, eps=1e-6),
            nn.ELU(),
            nn.Dropout(config.dropout)]

        dilation = 1
        for _ in range(config.num_layers):
            block = DilatedResidualBlock(
                config.num_features, config.kernel_size, dilation, config.dropout)
            layers.append(block)

            dilation *= 2
            if dilation > 16:
                dilation = 1

        self.resnet = nn.Sequential(*layers)
        self.predict_theta = nn.Conv2d(config.num_features, 25, 1)
        self.predict_phi = nn.Conv2d(config.num_features, 13, 1)
        self.predict_dist = nn.Conv2d(config.num_features, 37, 1)
        self.predict_bb = nn.Conv2d(config.num_features, 3, 1)
        self.predict_omega = nn.Conv2d(config.num_features, 25, 1)

        self.init_weights()

    def init_weights(self):
        self.apply(self._init_weights)
        nn.init.constant_(self.predict_theta.weight, 0)
        nn.init.constant_(self.predict_phi.weight, 0)
        nn.init.constant_(self.predict_dist.weight, 0)
        nn.init.constant_(self.predict_bb.weight, 0)
        nn.init.constant_(self.predict_omega.weight, 0)

    def forward(self,
                features,
                theta=None,
                phi=None,
                dist=None,
                omega=None):
        batch_size = features.size(0)
        seqlen = features.size(2)
        embedding = self.resnet(features)

        # anglegrams for theta
        logits_theta = self.predict_theta(embedding)

        # anglegrams for phi
        logits_phi = self.predict_phi(embedding)

        # symmetrize
        sym_embedding = 0.5 * (embedding + embedding.transpose(-1, -2))

        # distograms
        logits_dist = self.predict_dist(sym_embedding)

        # beta-strand pairings (not used)
        # logits_bb = self.predict_bb(sym_embedding)

        # anglegrams for omega
        logits_omega = self.predict_omega(sym_embedding)

        logits_dist = logits_dist.permute(0, 2, 3, 1).contiguous()
        logits_theta = logits_theta.permute(0, 2, 3, 1).contiguous()
        logits_omega = logits_omega.permute(0, 2, 3, 1).contiguous()
        logits_phi = logits_phi.permute(0, 2, 3, 1).contiguous()

        probs = {}
        probs['p_dist'] = nn.Softmax(-1)(logits_dist)
        probs['p_theta'] = nn.Softmax(-1)(logits_theta)
        probs['p_omega'] = nn.Softmax(-1)(logits_omega)
        probs['p_phi'] = nn.Softmax(-1)(logits_phi)
        outputs = (probs,)

        metrics = {}
        total_loss = 0

        if dist is not None:
            logits_dist = logits_dist.reshape(batch_size * seqlen * seqlen, 37)
            loss_dist = nn.CrossEntropyLoss(ignore_index=-1)(logits_dist, dist.view(-1))
            metrics['dist'] = loss_dist
            total_loss += loss_dist
        if theta is not None:
            logits_theta = logits_theta.reshape(batch_size * seqlen * seqlen, 25)
            loss_theta = nn.CrossEntropyLoss(ignore_index=0)(logits_theta, theta.view(-1))
            metrics['theta'] = loss_theta
            total_loss += loss_theta
        if omega is not None:
            logits_omega = logits_omega.reshape(batch_size * seqlen * seqlen, 25)
            loss_omega = nn.CrossEntropyLoss(ignore_index=0)(logits_omega, omega.view(-1))
            metrics['omega'] = loss_omega
            total_loss += loss_omega
        if phi is not None:
            logits_phi = logits_phi.reshape(batch_size * seqlen * seqlen, 13)
            loss_phi = nn.CrossEntropyLoss(ignore_index=0)(logits_phi, phi.view(-1))
            metrics['phi'] = loss_phi
            total_loss += loss_phi

        if len(metrics) > 0:
            outputs = ((total_loss, metrics),) + outputs

        return outputs


@registry.register_task_model('trrosetta', 'trrosetta')
class TRRosetta(TRRosettaAbstractModel):

    def __init__(self, config: TRRosettaConfig):
        super().__init__(config)
        self.extract_features = MSAFeatureExtractor(config)
        self.trrosetta = TRRosettaPredictor(config)

    def forward(self,
                msa1hot,
                theta=None,
                phi=None,
                dist=None,
                omega=None):
        features = self.extract_features(msa1hot)
        return self.trrosetta(features, theta, phi, dist, omega)