File size: 9,137 Bytes
212111c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import logging
import typing
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm

from .modeling_utils import ProteinConfig
from .modeling_utils import ProteinModel
from .modeling_utils import ValuePredictionHead
from .modeling_utils import SequenceClassificationHead
from .modeling_utils import SequenceToSequenceClassificationHead
from .modeling_utils import PairwiseContactPredictionHead
from ..registry import registry

logger = logging.getLogger(__name__)


URL_PREFIX = "https://s3.amazonaws.com/proteindata/pytorch-models/"
UNIREP_PRETRAINED_CONFIG_ARCHIVE_MAP: typing.Dict[str, str] = {
    'babbler-1900': URL_PREFIX + 'unirep-base-config.json'}
UNIREP_PRETRAINED_MODEL_ARCHIVE_MAP: typing.Dict[str, str] = {
    'babbler-1900': URL_PREFIX + 'unirep-base-pytorch_model.bin'}


class UniRepConfig(ProteinConfig):
    pretrained_config_archive_map = UNIREP_PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size: int = 26,
                 input_size: int = 10,
                 hidden_size: int = 1900,
                 hidden_dropout_prob: float = 0.1,
                 layer_norm_eps: float = 1e-12,
                 initializer_range: float = 0.02,
                 **kwargs):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range


class mLSTMCell(nn.Module):
    def __init__(self, config):
        super().__init__()
        project_size = config.hidden_size * 4
        self.wmx = weight_norm(
            nn.Linear(config.input_size, config.hidden_size, bias=False))
        self.wmh = weight_norm(
            nn.Linear(config.hidden_size, config.hidden_size, bias=False))
        self.wx = weight_norm(
            nn.Linear(config.input_size, project_size, bias=False))
        self.wh = weight_norm(
            nn.Linear(config.hidden_size, project_size, bias=True))

    def forward(self, inputs, state):
        h_prev, c_prev = state
        m = self.wmx(inputs) * self.wmh(h_prev)
        z = self.wx(inputs) + self.wh(m)
        i, f, o, u = torch.chunk(z, 4, 1)
        i = torch.sigmoid(i)
        f = torch.sigmoid(f)
        o = torch.sigmoid(o)
        u = torch.tanh(u)
        c = f * c_prev + i * u
        h = o * torch.tanh(c)

        return h, c


class mLSTM(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.mlstm_cell = mLSTMCell(config)
        self.hidden_size = config.hidden_size

    def forward(self, inputs, state=None, mask=None):
        batch_size = inputs.size(0)
        seqlen = inputs.size(1)

        if mask is None:
            mask = torch.ones(batch_size, seqlen, 1, dtype=inputs.dtype, device=inputs.device)
        elif mask.dim() == 2:
            mask = mask.unsqueeze(2)

        if state is None:
            zeros = torch.zeros(batch_size, self.hidden_size,
                                dtype=inputs.dtype, device=inputs.device)
            state = (zeros, zeros)

        steps = []
        for seq in range(seqlen):
            prev = state
            seq_input = inputs[:, seq, :]
            hx, cx = self.mlstm_cell(seq_input, state)
            seqmask = mask[:, seq]
            hx = seqmask * hx + (1 - seqmask) * prev[0]
            cx = seqmask * cx + (1 - seqmask) * prev[1]
            state = (hx, cx)
            steps.append(hx)

        return torch.stack(steps, 1), (hx, cx)


class UniRepAbstractModel(ProteinModel):

    config_class = UniRepConfig
    pretrained_model_archive_map = UNIREP_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "unirep"

    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


@registry.register_task_model('embed', 'unirep')
class UniRepModel(UniRepAbstractModel):

    def __init__(self, config: UniRepConfig):
        super().__init__(config)
        self.embed_matrix = nn.Embedding(config.vocab_size, config.input_size)
        self.encoder = mLSTM(config)
        self.output_hidden_states = config.output_hidden_states
        self.init_weights()

    def forward(self, input_ids, input_mask=None):
        if input_mask is None:
            input_mask = torch.ones_like(input_ids)

        # fp16 compatibility
        input_mask = input_mask.to(dtype=next(self.parameters()).dtype)
        embedding_output = self.embed_matrix(input_ids)

        encoder_outputs = self.encoder(embedding_output, mask=input_mask)
        sequence_output = encoder_outputs[0]
        hidden_states = encoder_outputs[1]
        pooled_outputs = torch.cat(hidden_states, 1)

        outputs = (sequence_output, pooled_outputs)
        return outputs


@registry.register_task_model('language_modeling', 'unirep')
class UniRepForLM(UniRepAbstractModel):
    # TODO: Fix this for UniRep - UniRep changes the size of the targets

    def __init__(self, config):
        super().__init__(config)

        self.unirep = UniRepModel(config)
        self.feedforward = nn.Linear(config.hidden_size, config.vocab_size - 1)

        self.init_weights()

    def forward(self,
                input_ids,
                input_mask=None,
                targets=None):

        outputs = self.unirep(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        prediction_scores = self.feedforward(sequence_output)

        # add hidden states and if they are here
        outputs = (prediction_scores,) + outputs[2:]

        if targets is not None:
            targets = targets[:, 1:]
            prediction_scores = prediction_scores[:, :-1]
            loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
            lm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size), targets.view(-1))
            outputs = (lm_loss,) + outputs

        # (loss), prediction_scores, (hidden_states)
        return outputs


@registry.register_task_model('fluorescence', 'unirep')
@registry.register_task_model('stability', 'unirep')
class UniRepForValuePrediction(UniRepAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.unirep = UniRepModel(config)
        self.predict = ValuePredictionHead(config.hidden_size * 2)

        self.init_weights()

    def forward(self, input_ids, input_mask=None, targets=None):

        outputs = self.unirep(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.predict(pooled_output, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states)
        return outputs


@registry.register_task_model('remote_homology', 'unirep')
class UniRepForSequenceClassification(UniRepAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.unirep = UniRepModel(config)
        self.classify = SequenceClassificationHead(
            config.hidden_size * 2, config.num_labels)

        self.init_weights()

    def forward(self, input_ids, input_mask=None, targets=None):

        outputs = self.unirep(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.classify(pooled_output, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states)
        return outputs


@registry.register_task_model('secondary_structure', 'unirep')
class UniRepForSequenceToSequenceClassification(UniRepAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.unirep = UniRepModel(config)
        self.classify = SequenceToSequenceClassificationHead(
            config.hidden_size, config.num_labels, ignore_index=-1)

        self.init_weights()

    def forward(self, input_ids, input_mask=None, targets=None):

        outputs = self.unirep(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.classify(sequence_output, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states)
        return outputs


@registry.register_task_model('contact_prediction', 'unirep')
class UniRepForContactPrediction(UniRepAbstractModel):

    def __init__(self, config):
        super().__init__(config)

        self.unirep = UniRepModel(config)
        self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1)

        self.init_weights()

    def forward(self, input_ids, protein_length, input_mask=None, targets=None):

        outputs = self.unirep(input_ids, input_mask=input_mask)

        sequence_output, pooled_output = outputs[:2]
        outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:]
        # (loss), prediction_scores, (hidden_states), (attentions)
        return outputs