File size: 8,953 Bytes
212111c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Modifications by Roshan Rao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

import logging
import math

import torch
from torch.optim import Optimizer  # type: ignore
from torch.optim.lr_scheduler import LambdaLR

logger = logging.getLogger(__name__)


class ConstantLRSchedule(LambdaLR):
    """ Constant learning rate schedule.
    """
    def __init__(self, optimizer, last_epoch=-1):
        super(ConstantLRSchedule, self).__init__(
            optimizer, lambda _: 1.0, last_epoch=last_epoch)


class WarmupConstantSchedule(LambdaLR):
    """ Linear warmup and then constant.
        Linearly increases learning rate schedule from 0 to 1 over `warmup_steps`
        training steps. Keeps learning rate schedule equal to 1. after warmup_steps.
    """
    def __init__(self, optimizer, warmup_steps, last_epoch=-1):
        self.warmup_steps = warmup_steps
        super(WarmupConstantSchedule, self).__init__(
            optimizer, self.lr_lambda, last_epoch=last_epoch)

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1.0, self.warmup_steps))
        return 1.


class WarmupLinearSchedule(LambdaLR):
    """ Linear warmup and then linear decay.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps`
        steps.
    """
    def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        super(WarmupLinearSchedule, self).__init__(
            optimizer, self.lr_lambda, last_epoch=last_epoch)

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1, self.warmup_steps))
        return max(0.0, float(self.t_total - step) / float(
            max(1.0, self.t_total - self.warmup_steps)))


class WarmupCosineSchedule(LambdaLR):
    """ Linear warmup and then cosine decay.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps
        following a cosine curve. If `cycles` (default=0.5) is different from default, learning
        rate follows cosine function after warmup.
    """
    def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.cycles = cycles
        super(WarmupCosineSchedule, self).__init__(
            optimizer, self.lr_lambda, last_epoch=last_epoch)

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1.0, self.warmup_steps))
        # progress after warmup
        progress = float(step - self.warmup_steps) / float(
            max(1, self.t_total - self.warmup_steps))
        return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))


class WarmupCosineWithHardRestartsSchedule(LambdaLR):
    """ Linear warmup and then cosine cycles with hard restarts.
        Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
        If `cycles` (default=1.) is different from default, learning rate follows `cycles` times
        a cosine decaying learning rate (with hard restarts).
    """
    def __init__(self, optimizer, warmup_steps, t_total, cycles=1., last_epoch=-1):
        self.warmup_steps = warmup_steps
        self.t_total = t_total
        self.cycles = cycles
        super(WarmupCosineWithHardRestartsSchedule, self).__init__(
            optimizer, self.lr_lambda, last_epoch=last_epoch)

    def lr_lambda(self, step):
        if step < self.warmup_steps:
            return float(step) / float(max(1, self.warmup_steps))
        # progress after warmup
        progress = float(step - self.warmup_steps) / float(
            max(1, self.t_total - self.warmup_steps))
        if progress >= 1.0:
            return 0.0
        return max(0.0, 0.5 * (1. + math.cos(
            math.pi * ((float(self.cycles) * progress) % 1.0))))


class AdamW(Optimizer):
    """ Implements Adam algorithm with weight decay fix.

    Parameters:
        lr (float): learning rate. Default 1e-3.
        betas (tuple of 2 floats): Adams beta parameters (b1, b2). Default: (0.9, 0.999)
        eps (float): Adams epsilon. Default: 1e-6
        weight_decay (float): Weight decay. Default: 0.0
        correct_bias (bool): can be set to False to avoid correcting bias in Adam
            (e.g. like in Bert TF repository). Default True.
    """
    def __init__(self,
                 params,
                 lr=1e-3,
                 betas=(0.9, 0.999),
                 eps=1e-6,
                 weight_decay=0.0,
                 correct_bias=True):
        if lr < 0.0:
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
                        correct_bias=correct_bias)
        super(AdamW, self).__init__(params, defaults)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, '
                                       'please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                # Decay the first and second moment running average coefficient
                # In-place operations to update the averages at the same time
                exp_avg.mul_(beta1).add_(1.0 - beta1, grad)
                exp_avg_sq.mul_(beta2).addcmul_(1.0 - beta2, grad, grad)
                denom = exp_avg_sq.sqrt().add_(group['eps'])

                step_size = group['lr']
                if group['correct_bias']:  # No bias correction for Bert
                    bias_correction1 = 1.0 - beta1 ** state['step']
                    bias_correction2 = 1.0 - beta2 ** state['step']
                    step_size = step_size * math.sqrt(bias_correction2) / bias_correction1

                p.data.addcdiv_(-step_size, exp_avg, denom)

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
                # Instead we want to decay the weights in a manner that doesn't interact
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
                # Add weight decay at the end (fixed version)
                if group['weight_decay'] > 0.0:
                    p.data.add_(-group['lr'] * group['weight_decay'], p.data)

        return loss