GH29BERT / tape /optimization.py
KeXing
Upload 26 files
212111c
raw
history blame contribute delete
No virus
8.95 kB
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Modifications by Roshan Rao
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import logging
import math
import torch
from torch.optim import Optimizer # type: ignore
from torch.optim.lr_scheduler import LambdaLR
logger = logging.getLogger(__name__)
class ConstantLRSchedule(LambdaLR):
""" Constant learning rate schedule.
"""
def __init__(self, optimizer, last_epoch=-1):
super(ConstantLRSchedule, self).__init__(
optimizer, lambda _: 1.0, last_epoch=last_epoch)
class WarmupConstantSchedule(LambdaLR):
""" Linear warmup and then constant.
Linearly increases learning rate schedule from 0 to 1 over `warmup_steps`
training steps. Keeps learning rate schedule equal to 1. after warmup_steps.
"""
def __init__(self, optimizer, warmup_steps, last_epoch=-1):
self.warmup_steps = warmup_steps
super(WarmupConstantSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
return 1.
class WarmupLinearSchedule(LambdaLR):
""" Linear warmup and then linear decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps`
steps.
"""
def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
super(WarmupLinearSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
return max(0.0, float(self.t_total - step) / float(
max(1.0, self.t_total - self.warmup_steps)))
class WarmupCosineSchedule(LambdaLR):
""" Linear warmup and then cosine decay.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps
following a cosine curve. If `cycles` (default=0.5) is different from default, learning
rate follows cosine function after warmup.
"""
def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(
max(1, self.t_total - self.warmup_steps))
return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
class WarmupCosineWithHardRestartsSchedule(LambdaLR):
""" Linear warmup and then cosine cycles with hard restarts.
Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps.
If `cycles` (default=1.) is different from default, learning rate follows `cycles` times
a cosine decaying learning rate (with hard restarts).
"""
def __init__(self, optimizer, warmup_steps, t_total, cycles=1., last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineWithHardRestartsSchedule, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(
max(1, self.t_total - self.warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1. + math.cos(
math.pi * ((float(self.cycles) * progress) % 1.0))))
class AdamW(Optimizer):
""" Implements Adam algorithm with weight decay fix.
Parameters:
lr (float): learning rate. Default 1e-3.
betas (tuple of 2 floats): Adams beta parameters (b1, b2). Default: (0.9, 0.999)
eps (float): Adams epsilon. Default: 1e-6
weight_decay (float): Weight decay. Default: 0.0
correct_bias (bool): can be set to False to avoid correcting bias in Adam
(e.g. like in Bert TF repository). Default True.
"""
def __init__(self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0.0,
correct_bias=True):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
correct_bias=correct_bias)
super(AdamW, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, '
'please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(1.0 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1.0 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
step_size = group['lr']
if group['correct_bias']: # No bias correction for Bert
bias_correction1 = 1.0 - beta1 ** state['step']
bias_correction2 = 1.0 - beta2 ** state['step']
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
p.data.addcdiv_(-step_size, exp_avg, denom)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group['weight_decay'] > 0.0:
p.data.add_(-group['lr'] * group['weight_decay'], p.data)
return loss