import typing import logging import torch import torch.nn as nn import torch.nn.functional as F from .modeling_utils import ProteinConfig from .modeling_utils import ProteinModel from .modeling_utils import get_activation_fn from .modeling_utils import MLMHead from .modeling_utils import LayerNorm from .modeling_utils import ValuePredictionHead from .modeling_utils import SequenceClassificationHead from .modeling_utils import SequenceToSequenceClassificationHead from .modeling_utils import PairwiseContactPredictionHead from ..registry import registry logger = logging.getLogger(__name__) RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP: typing.Dict[str, str] = {} RESNET_PRETRAINED_MODEL_ARCHIVE_MAP: typing.Dict[str, str] = {} class ProteinAEConfig(ProteinConfig): pretrained_config_archive_map = RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size: int = 30, hidden_size: int = 512, num_hidden_layers: int = 30, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, temporal_pooling: str = 'attention', freeze_embedding: bool = False, max_size: int = 3000, latent_size: int = 1024, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.num_hidden_layers = num_hidden_layers self.hidden_size = hidden_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.temporal_pooling = temporal_pooling self.freeze_embedding = freeze_embedding self.max_size = max_size self.latent_size = latent_size class MaskedConv1d(nn.Conv1d): def forward(self, x, input_mask=None): if input_mask is not None: x = x * input_mask return super().forward(x) class ProteinResNetLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.norm = LayerNorm(config.hidden_size) def forward(self, x): return self.norm(x.transpose(1, 2)).transpose(1, 2) class ProteinResNetBlock(nn.Module): def __init__(self, config): super().__init__() self.conv1 = MaskedConv1d( config.hidden_size, config.hidden_size, 3, padding=1, bias=False) # self.bn1 = nn.BatchNorm1d(config.hidden_size) self.bn1 = ProteinResNetLayerNorm(config) self.conv2 = MaskedConv1d( config.hidden_size, config.hidden_size, 3, padding=1, bias=False) # self.bn2 = nn.BatchNorm1d(config.hidden_size) self.bn2 = ProteinResNetLayerNorm(config) self.activation_fn = get_activation_fn(config.hidden_act) def forward(self, x, input_mask=None): identity = x out = self.conv1(x, input_mask) out = self.bn1(out) out = self.activation_fn(out) out = self.conv2(out, input_mask) out = self.bn2(out) out += identity out = self.activation_fn(out) return out class ProteinResNetEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() embed_dim = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, embed_dim, padding_idx=0) inverse_frequency = 1 / (10000 ** (torch.arange(0.0, embed_dim, 2.0) / embed_dim)) self.register_buffer('inverse_frequency', inverse_frequency) self.layer_norm = LayerNorm(embed_dim, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids): words_embeddings = self.word_embeddings(input_ids) seq_length = input_ids.size(1) position_ids = torch.arange( seq_length - 1, -1, -1.0, dtype=words_embeddings.dtype, device=words_embeddings.device) sinusoidal_input = torch.ger(position_ids, self.inverse_frequency) position_embeddings = torch.cat([sinusoidal_input.sin(), sinusoidal_input.cos()], -1) position_embeddings = position_embeddings.unsqueeze(0) embeddings = words_embeddings + position_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ResNetEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.output_hidden_states = config.output_hidden_states self.encoder = nn.ModuleList( [ProteinResNetBlock(config) for _ in range(config.num_hidden_layers)]) self.decoder = nn.ModuleList( [ProteinResNetBlock(config) for _ in range(config.num_hidden_layers)]) self.bottleneck1 = nn.Linear(93*config.hidden_size, config.latent_size) self.bottleneck2 = nn.Linear(config.latent_size, 94*config.hidden_size) def forward(self, hidden_states, input_mask=None): for i, layer_module in enumerate(self.encoder): hidden_states = layer_module(hidden_states) if i != 0 and i % 5 == 0: hidden_states = nn.functional.avg_pool1d(hidden_states, 2, stride=2) bs = hidden_states.shape[0] latents = self.bottleneck1(hidden_states.reshape(bs, -1)) hidden_states = self.bottleneck2(latents).reshape(bs, -1, 94) for i, layer_module in enumerate(self.decoder): if i != 0 and i % 5 == 0: hidden_states = nn.functional.interpolate(hidden_states, scale_factor=2) hidden_states = layer_module(hidden_states) hidden_states = hidden_states[:,:,:self.config.max_size] outputs = (hidden_states, latents) return outputs class ProteinAEAbstractModel(ProteinModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = ProteinAEConfig base_model_prefix = "ae" def __init__(self, config): super().__init__(config) def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: module.bias.data.zero_() @registry.register_task_model('embed', 'autoencoder') class ProteinResNetModel(ProteinAEAbstractModel): def __init__(self, config): super().__init__(config) self.embeddings = ProteinResNetEmbeddings(config) self.encoder = ResNetEncoder(config) self.init_weights() def forward(self, input_ids, input_mask=None): pre_pad_shape = input_ids.shape[1] if pre_pad_shape >= self.config.max_size: input_ids = input_ids[:,:self.config.max_size] if not input_mask is None: input_mask = input_mask[:,:self.config.max_size] else: input_ids = F.pad(input_ids, (0, self.config.max_size - pre_pad_shape)) if not input_mask is None: input_mask = F.pad(input_mask, (0, self.config.max_size - pre_pad_shape)) assert input_ids.shape[1] == self.config.max_size if input_mask is not None and torch.any(input_mask != 1): extended_input_mask = input_mask.unsqueeze(2) # fp16 compatibility extended_input_mask = extended_input_mask.to( dtype=next(self.parameters()).dtype) else: extended_input_mask = None embedding_output = self.embeddings(input_ids) embedding_output = embedding_output.transpose(1, 2) if extended_input_mask is not None: extended_input_mask = extended_input_mask.transpose(1, 2) sequence_output, pooled_output = self.encoder(embedding_output, extended_input_mask) sequence_output = sequence_output.transpose(1, 2).contiguous() return sequence_output, pooled_output @registry.register_task_model('beta_lactamase', 'autoencoder') @registry.register_task_model('language_modeling', 'autoencoder') class ProteinResNetForMaskedLM(ProteinAEAbstractModel): def __init__(self, config): super().__init__(config) self.resnet = ProteinResNetModel(config) self.mlm = MLMHead( config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps, ignore_index=-1) self.init_weights() self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.mlm.decoder, self.resnet.embeddings.word_embeddings) def forward(self, input_ids, input_mask=None, targets=None): pre_pad_shape = input_ids.shape[1] if targets is not None: targets = targets[:,:self.config.max_size] outputs = self.resnet(input_ids, input_mask=input_mask) outputs = self.mlm(outputs[0][:,:pre_pad_shape,:], targets) + (outputs[1],) # (loss), prediction_scores, (hidden_states), (attentions) return outputs @registry.register_task_model('fluorescence', 'autoencoder') @registry.register_task_model('stability', 'autoencoder') class ProteinResNetForValuePrediction(ProteinAEAbstractModel): def __init__(self, config): super().__init__(config) self.resnet = ProteinResNetModel(config) self.predict = ValuePredictionHead(config.hidden_size) self.freeze_embedding = config.freeze_embedding self.init_weights() def forward(self, input_ids, input_mask=None, targets=None): if self.freeze_embedding: self.resnet.train(False) outputs = self.resnet(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] outputs = self.predict(pooled_output, targets) + outputs[2:] # (loss), prediction_scores, (hidden_states), (attentions) return outputs @registry.register_task_model('remote_homology', 'autoencoder') class ProteinResNetForSequenceClassification(ProteinAEAbstractModel): def __init__(self, config): super().__init__(config) self.resnet = ProteinResNetModel(config) self.classify = SequenceClassificationHead(config.hidden_size, config.num_labels) self.freeze_embedding = config.freeze_embedding self.init_weights() def forward(self, input_ids, input_mask=None, targets=None): if self.freeze_embedding: self.resnet.train(False) outputs = self.resnet(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] outputs = self.classify(pooled_output, targets) + outputs[2:] # (loss), prediction_scores, (hidden_states), (attentions) return outputs