# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Modified by Roshan Rao # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model. """ from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import torch from torch import nn from torch.utils.checkpoint import checkpoint from .modeling_utils import ProteinConfig from .modeling_utils import ProteinModel from .modeling_utils import prune_linear_layer from .modeling_utils import get_activation_fn from .modeling_utils import LayerNorm from .modeling_utils import MLMHead from .modeling_utils import ValuePredictionHead from .modeling_utils import SequenceClassificationHead from .modeling_utils import SequenceToSequenceClassificationHead from .modeling_utils import PairwiseContactPredictionHead from ..registry import registry logger = logging.getLogger(__name__) URL_PREFIX = "https://s3.amazonaws.com/proteindata/pytorch-models/" BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base': URL_PREFIX + "bert-base-pytorch_model.bin", } BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'bert-base': URL_PREFIX + "bert-base-config.json" } class ProteinBertConfig(ProteinConfig): r""" :class:`~pytorch_transformers.ProteinBertConfig` is the configuration class to store the configuration of a `ProteinBertModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `ProteinBertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the ProteinBert encoder. num_attention_heads: Number of attention heads for each attention layer in the ProteinBert encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the ProteinBert encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `ProteinBertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size: int = 30, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.1, attention_probs_dropout_prob: float = 0.1, max_position_embeddings: int = 8096, type_vocab_size: int = 2, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, temporal_pooling: str = 'attention', freeze_embedding: bool = False, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.temporal_pooling = temporal_pooling self.freeze_embedding = freeze_embedding class ProteinBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be # able to load any TensorFlow checkpoint file self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ProteinBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in # ProteinBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original ProteinBert paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) \ if self.output_attentions else (context_layer,) return outputs class ProteinBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class ProteinBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = ProteinBertSelfAttention(config) self.output = ProteinBertSelfOutput(config) def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) for head in heads: mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads def forward(self, input_tensor, attention_mask): self_outputs = self.self(input_tensor, attention_mask) attention_output = self.output(self_outputs[0], input_tensor) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class ProteinBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_activation_fn(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class ProteinBertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class ProteinBertLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = ProteinBertAttention(config) self.intermediate = ProteinBertIntermediate(config) self.output = ProteinBertOutput(config) def forward(self, hidden_states, attention_mask): attention_outputs = self.attention(hidden_states, attention_mask) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class ProteinBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList( [ProteinBertLayer(config) for _ in range(config.num_hidden_layers)]) def run_function(self, start, chunk_size): def custom_forward(hidden_states, attention_mask): all_hidden_states = () all_attentions = () chunk_slice = slice(start, start + chunk_size) for layer in self.layer[chunk_slice]: if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer(hidden_states, attention_mask) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs return custom_forward def forward(self, hidden_states, attention_mask, chunks=None): all_hidden_states = () all_attentions = () if chunks is not None: assert isinstance(chunks, int) chunk_size = (len(self.layer) + chunks - 1) // chunks for start in range(0, len(self.layer), chunk_size): outputs = checkpoint(self.run_function(start, chunk_size), hidden_states, attention_mask) if self.output_hidden_states: all_hidden_states = all_hidden_states + outputs[1] if self.output_attentions: all_attentions = all_attentions + outputs[-1] hidden_states = outputs[0] else: for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # outputs, (hidden states), (attentions) class ProteinBertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() self.temporal_pooling = config.temporal_pooling self._la_w1 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2) self._la_w2 = nn.Conv1d(config.hidden_size, int(config.hidden_size/2), 5, padding=2) self._la_mlp = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. if self.temporal_pooling == 'mean': return hidden_states.mean(dim=1) if self.temporal_pooling == 'max': return hidden_states.max(dim=1) if self.temporal_pooling == 'concat': _temp = hidden_states.reshape(hidden_states.shape[0], -1) return torch.nn.functional.pad(_temp, (0, 2048 - _temp.shape[1])) if self.temporal_pooling == 'topmax': val, _ = torch.topk(hidden_states, k=5, dim=1) return val.mean(dim=1) if self.temporal_pooling == 'light_attention': _temp = hidden_states.permute(0,2,1) a = self._la_w1(_temp).softmax(dim=-1) v = self._la_w2(_temp) v_max = v.max(dim=-1).values v_sum = (a * v).sum(dim=-1) return self._la_mlp(torch.cat([v_max, v_sum], dim=1)) first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class ProteinBertAbstractModel(ProteinModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = ProteinBertConfig pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @registry.register_task_model('embed', 'transformer') class ProteinBertModel(ProteinBertAbstractModel): def __init__(self, config): super().__init__(config) self.embeddings = ProteinBertEmbeddings(config) self.encoder = ProteinBertEncoder(config) self.pooler = ProteinBertPooler(config) self.init_weights() def _resize_token_embeddings(self, new_num_tokens): old_embeddings = self.embeddings.word_embeddings new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens) self.embeddings.word_embeddings = new_embeddings return self.embeddings.word_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class ProteinModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def forward(self, input_ids, input_mask=None): if input_mask is None: input_mask = torch.ones_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = input_mask.unsqueeze(1).unsqueeze(2) # Since input_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=torch.float32) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids) encoder_outputs = self.encoder(embedding_output, extended_attention_mask, chunks=None) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) # add hidden_states and attentions if they are here outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] return outputs # sequence_output, pooled_output, (hidden_states), (attentions) @registry.register_task_model('masked_language_modeling', 'transformer') class ProteinBertForMaskedLM(ProteinBertAbstractModel): def __init__(self, config): super().__init__(config) self.bert = ProteinBertModel(config) self.mlm = MLMHead( config.hidden_size, config.vocab_size, config.hidden_act, config.layer_norm_eps, ignore_index=-1) self.init_weights() self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.mlm.decoder, self.bert.embeddings.word_embeddings) def forward(self, input_ids, input_mask=None, targets=None): outputs = self.bert(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] # add hidden states and attention if they are here outputs = self.mlm(sequence_output, targets) + outputs[:2] # (loss), prediction_scores, (hidden_states), (attentions) return outputs @registry.register_task_model('fluorescence', 'transformer') @registry.register_task_model('stability', 'transformer') class ProteinBertForValuePrediction(ProteinBertAbstractModel): def __init__(self, config): super().__init__(config) self.bert = ProteinBertModel(config) self.predict = ValuePredictionHead(config.hidden_size) self.freeze_embedding = config.freeze_embedding self.init_weights() def forward(self, input_ids, input_mask=None, targets=None): if self.freeze_embedding: self.bert.train(False) outputs = self.bert(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] outputs = self.predict(pooled_output, targets) + outputs[2:] # (loss), prediction_scores, (hidden_states), (attentions) return outputs @registry.register_task_model('remote_homology', 'transformer') class ProteinBertForSequenceClassification(ProteinBertAbstractModel): def __init__(self, config): super().__init__(config) self.bert = ProteinBertModel(config) self.classify = SequenceClassificationHead( config.hidden_size, config.num_labels) self.freeze_embedding = config.freeze_embedding self.init_weights() def forward(self, input_ids, input_mask=None, targets=None): if self.freeze_embedding: self.bert.train(False) outputs = self.bert(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] outputs = self.classify(pooled_output, targets) + outputs[2:] # (loss), prediction_scores, (hidden_states), (attentions) return outputs @registry.register_task_model('secondary_structure', 'transformer') class ProteinBertForSequenceToSequenceClassification(ProteinBertAbstractModel): def __init__(self, config): super().__init__(config) self.bert = ProteinBertModel(config) self.classify = SequenceToSequenceClassificationHead( config.hidden_size, config.num_labels, ignore_index=-1) self.init_weights() def forward(self, input_ids, input_mask=None, targets=None): outputs = self.bert(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] outputs = self.classify(sequence_output, targets) + outputs[2:] # (loss), prediction_scores, (hidden_states), (attentions) return outputs @registry.register_task_model('contact_prediction', 'transformer') class ProteinBertForContactPrediction(ProteinBertAbstractModel): def __init__(self, config): super().__init__(config) self.bert = ProteinBertModel(config) self.predict = PairwiseContactPredictionHead(config.hidden_size, ignore_index=-1) self.init_weights() def forward(self, input_ids, protein_length, input_mask=None, targets=None): outputs = self.bert(input_ids, input_mask=input_mask) sequence_output, pooled_output = outputs[:2] outputs = self.predict(sequence_output, protein_length, targets) + outputs[2:] # (loss), prediction_scores, (hidden_states), (attentions) return outputs