pixelization / models /basic_layer.py
NoCrypt's picture
init
2c9c37b
raw
history blame contribute delete
No virus
16.5 kB
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
class ModulationConvBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride=1,
padding=0, norm='none', activation='relu', pad_type='zero'):
super(ModulationConvBlock, self).__init__()
self.in_c = input_dim
self.out_c = output_dim
self.ksize = kernel_size
self.stride = 1
self.padding = kernel_size // 2
self.eps = 1e-8
weight_shape = (output_dim, input_dim, kernel_size, kernel_size)
fan_in = kernel_size * kernel_size *input_dim
wscale = 1.0/np.sqrt(fan_in)
self.weight = nn.Parameter(torch.randn(*weight_shape))
self.wscale = wscale
self.bias = nn.Parameter(torch.zeros(output_dim))
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.activate_scale = np.sqrt(2.0)
def forward(self, x, code):
batch,in_channel,height,width = x.shape
weight = self.weight * self.wscale
_weight = weight.view(1, self.ksize, self.ksize, self.in_c, self.out_c)
_weight = _weight * code.view(batch, 1, 1, self.in_c, 1)
# demodulation
_weight_norm = torch.sqrt(torch.sum(_weight ** 2, dim=[1, 2, 3]) + self.eps)
_weight = _weight / _weight_norm.view(batch, 1, 1, 1, self.out_c)
# fused_modulate
x = x.view(1, batch * self.in_c, x.shape[2], x.shape[3])
weight = _weight.permute(1, 2, 3, 0, 4).reshape(
self.ksize, self.ksize, self.in_c, batch * self.out_c)
# not use_conv2d_transpose
weight = weight.permute(3, 2, 0, 1)
x = F.conv2d(x,
weight=weight,
bias=None,
stride=self.stride,
padding=self.padding,
groups=(batch if True else 1))
if True:#self.fused_modulate:
x = x.view(batch, self.out_c, height, width)
x = x+self.bias.view(1,-1,1,1)
x = self.activate(x)*self.activate_scale
return x
class AliasConvBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride,
padding=0, norm='none', activation='relu', pad_type='zero'):
super(AliasConvBlock, self).__init__()
self.use_bias = True
# initialize padding
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
# self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none' or norm == 'sn':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
# initialize convolution
if norm == 'sn':
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
else:
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
def forward(self, x):
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class AliasResBlocks(nn.Module):
def __init__(self, num_blocks, dim, norm='in', activation='relu', pad_type='zero'):
super(AliasResBlocks, self).__init__()
self.model = []
for i in range(num_blocks):
self.model += [AliasResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x)
class AliasResBlock(nn.Module):
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
super(AliasResBlock, self).__init__()
model = []
model += [AliasConvBlock(dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
model += [AliasConvBlock(dim, dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
self.model = nn.Sequential(*model)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
##################################################################################
# Sequential Models
##################################################################################
class ResBlocks(nn.Module):
def __init__(self, num_blocks, dim, norm='in', activation='relu', pad_type='zero'):
super(ResBlocks, self).__init__()
self.model = []
for i in range(num_blocks):
self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
return self.model(x)
class MLP(nn.Module):
def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'):
super(MLP, self).__init__()
self.model = []
self.model += [linearBlock(input_dim, input_dim, norm=norm, activation=activ)]
self.model += [linearBlock(input_dim, dim, norm=norm, activation=activ)]
for i in range(n_blk - 2):
self.model += [linearBlock(dim, dim, norm=norm, activation=activ)]
self.model += [linearBlock(dim, output_dim, norm='none', activation='none')] # no output activations
self.model = nn.Sequential(*self.model)
# def forward(self, style0, style1, a=0):
# return self.model[3]((1 - a) * self.model[0:3](style0.view(style0.size(0), -1)) + a * self.model[0:3](
# style1.view(style1.size(0), -1)))
def forward(self, style0, style1=None, a=0):
style1 = style0
return self.model[3]((1 - a) * self.model[0:3](style0.view(style0.size(0), -1)) + a * self.model[0:3](
style1.view(style1.size(0), -1)))
##################################################################################
# Basic Blocks
##################################################################################
class ResBlock(nn.Module):
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
super(ResBlock, self).__init__()
model = []
model += [ConvBlock(dim, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)]
model += [ConvBlock(dim, dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)]
self.model = nn.Sequential(*model)
def forward(self, x):
residual = x
out = self.model(x)
out += residual
return out
class ConvBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride,
padding=0, norm='none', activation='relu', pad_type='zero'):
super(ConvBlock, self).__init__()
self.use_bias = True
# initialize padding
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'in':
# self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True)
self.norm = nn.InstanceNorm2d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'adain':
self.norm = AdaptiveInstanceNorm2d(norm_dim)
elif norm == 'none' or norm == 'sn':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
# initialize convolution
if norm == 'sn':
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
else:
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
def forward(self, x):
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class linearBlock(nn.Module):
def __init__(self, input_dim, output_dim, norm='none', activation='relu'):
super(linearBlock, self).__init__()
use_bias = True
# initialize fully connected layer
if norm == 'sn':
self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias))
else:
self.fc = nn.Linear(input_dim, output_dim, bias=use_bias)
# initialize normalization
norm_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm1d(norm_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm1d(norm_dim)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'none' or norm == 'sn':
self.norm = None
else:
assert 0, "Unsupported normalization: {}".format(norm)
# initialize activation
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activation: {}".format(activation)
def forward(self, x):
out = self.fc(x)
if self.norm:
out = self.norm(out)
if self.activation:
out = self.activation(out)
return out
##################################################################################
# Normalization layers
##################################################################################
class AdaptiveInstanceNorm2d(nn.Module):
def __init__(self, num_features, eps=1e-5, momentum=0.1):
super(AdaptiveInstanceNorm2d, self).__init__()
self.num_features = num_features
self.eps = eps
self.momentum = momentum
# weight and bias are dynamically assigned
self.weight = None
self.bias = None
# just dummy buffers, not used
self.register_buffer('running_mean', torch.zeros(num_features))
self.register_buffer('running_var', torch.ones(num_features))
def forward(self, x):
assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!"
b, c = x.size(0), x.size(1)
running_mean = self.running_mean.repeat(b)
running_var = self.running_var.repeat(b)
# Apply instance norm
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
out = F.batch_norm(
x_reshaped, running_mean, running_var, self.weight, self.bias,
True, self.momentum, self.eps)
return out.view(b, c, *x.size()[2:])
def __repr__(self):
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-5, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
# print(x.size())
if x.size(0) == 1:
# These two lines run much faster in pytorch 0.4 than the two lines listed below.
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
"""
Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida
and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
"""
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
# sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
u = getattr(self.module, self.name + "_u")
v = getattr(self.module, self.name + "_v")
w = getattr(self.module, self.name + "_bar")
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = nn.Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + "_u", u)
self.module.register_parameter(self.name + "_v", v)
self.module.register_parameter(self.name + "_bar", w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)