File size: 15,469 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Any, Optional, Set, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from peft.tuners.lycoris_utils import LycorisLayer


class LoKrLayer(nn.Module, LycorisLayer):
    # All names of layers that may contain adapter weights
    adapter_layer_names = (
        "lokr_w1",
        "lokr_w1_a",
        "lokr_w1_b",
        "lokr_w2",
        "lokr_w2_a",
        "lokr_w2_b",
        "lokr_t2",
    )
    # other_param_names is defined on parent class

    def __init__(self, base_layer: nn.Module) -> None:
        super().__init__()
        LycorisLayer.__init__(self, base_layer)

        # LoKr info
        self.lokr_w1 = nn.ParameterDict({})
        self.lokr_w1_a = nn.ParameterDict({})
        self.lokr_w1_b = nn.ParameterDict({})
        self.lokr_w2 = nn.ParameterDict({})
        self.lokr_w2_a = nn.ParameterDict({})
        self.lokr_w2_b = nn.ParameterDict({})
        self.lokr_t2 = nn.ParameterDict({})

    @property
    def _available_adapters(self) -> Set[str]:
        return {
            *self.lokr_w1,
            *self.lokr_w1_a,
            *self.lokr_w1_b,
            *self.lokr_w2,
            *self.lokr_w2_a,
            *self.lokr_w2_b,
            *self.lokr_t2,
        }

    def create_adapter_parameters(
        self,
        adapter_name: str,
        r: int,
        shape,
        use_w1: bool,
        use_w2: bool,
        use_effective_conv2d: bool,
    ):
        if use_w1:
            self.lokr_w1[adapter_name] = nn.Parameter(torch.empty(shape[0][0], shape[1][0]))
        else:
            self.lokr_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0][0], r))
            self.lokr_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][0]))

        if len(shape) == 4:
            # Conv2d
            if use_w2:
                self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1], *shape[2:]))
            elif use_effective_conv2d:
                self.lokr_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
                self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0][1]))  # b, 1-mode
                self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1]))  # d, 2-mode
            else:
                self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r))
                self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1] * shape[2] * shape[3]))
        else:
            # Linear
            if use_w2:
                self.lokr_w2[adapter_name] = nn.Parameter(torch.empty(shape[0][1], shape[1][1]))
            else:
                self.lokr_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0][1], r))
                self.lokr_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1][1]))

    def reset_adapter_parameters(self, adapter_name: str):
        if adapter_name in self.lokr_w1:
            nn.init.zeros_(self.lokr_w1[adapter_name])
        else:
            nn.init.zeros_(self.lokr_w1_a[adapter_name])
            nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5))

        if adapter_name in self.lokr_w2:
            nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5))
        else:
            nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5))

        if adapter_name in self.lokr_t2:
            nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5))

    def reset_adapter_parameters_random(self, adapter_name: str):
        if adapter_name in self.lokr_w1:
            nn.init.kaiming_uniform_(self.lokr_w1[adapter_name], a=math.sqrt(5))
        else:
            nn.init.kaiming_uniform_(self.lokr_w1_a[adapter_name], a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.lokr_w1_b[adapter_name], a=math.sqrt(5))

        if adapter_name in self.lokr_w2:
            nn.init.kaiming_uniform_(self.lokr_w2[adapter_name], a=math.sqrt(5))
        else:
            nn.init.kaiming_uniform_(self.lokr_w2_a[adapter_name], a=math.sqrt(5))
            nn.init.kaiming_uniform_(self.lokr_w2_b[adapter_name], a=math.sqrt(5))

        if adapter_name in self.lokr_t2:
            nn.init.kaiming_uniform_(self.lokr_t2[adapter_name], a=math.sqrt(5))

    def update_layer(
        self,
        adapter_name: str,
        r: int,
        alpha: float,
        rank_dropout: float,
        module_dropout: float,
        init_weights: bool,
        use_effective_conv2d: bool,
        decompose_both: bool,
        decompose_factor: int,
        **kwargs,
    ) -> None:
        """Internal function to create lokr adapter

        Args:
            adapter_name (`str`): Name for the adapter to add.
            r (`int`): Rank for the added adapter.
            alpha (`float`): Alpha for the added adapter.
            rank_dropout (`float`): The dropout probability for rank dimension during training
            module_dropout (`float`): The dropout probability for disabling adapter during training.
            init_weights (`bool`): Whether to initialize adapter weights.
            use_effective_conv2d (`bool`): Use parameter effective decomposition for Conv2d with ksize > 1.
            decompose_both (`bool`): Perform rank decomposition of left kronecker product matrix.
            decompose_factor (`int`): Kronecker product decomposition factor.
        """
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")

        self.r[adapter_name] = r
        self.alpha[adapter_name] = alpha
        self.scaling[adapter_name] = alpha / r
        self.rank_dropout[adapter_name] = rank_dropout
        self.module_dropout[adapter_name] = module_dropout
        base_layer = self.get_base_layer()

        # Determine shape of LoKr weights
        if isinstance(base_layer, nn.Linear):
            in_dim, out_dim = base_layer.in_features, base_layer.out_features

            in_m, in_n = factorization(in_dim, decompose_factor)
            out_l, out_k = factorization(out_dim, decompose_factor)
            shape = ((out_l, out_k), (in_m, in_n))  # ((a, b), (c, d)), out_dim = a*c, in_dim = b*d

            use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2)
            use_w2 = not (r < max(shape[0][1], shape[1][1]) / 2)
            use_effective_conv2d = False
        elif isinstance(base_layer, nn.Conv2d):
            in_dim, out_dim = base_layer.in_channels, base_layer.out_channels
            k_size = base_layer.kernel_size

            in_m, in_n = factorization(in_dim, decompose_factor)
            out_l, out_k = factorization(out_dim, decompose_factor)
            shape = ((out_l, out_k), (in_m, in_n), *k_size)  # ((a, b), (c, d), *k_size)

            use_w1 = not (decompose_both and r < max(shape[0][0], shape[1][0]) / 2)
            use_w2 = r >= max(shape[0][1], shape[1][1]) / 2
            use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1)
        else:
            raise TypeError(f"LoKr is not implemented for base layers of type {type(base_layer).__name__}")

        # Create weights with provided shape
        self.create_adapter_parameters(adapter_name, r, shape, use_w1, use_w2, use_effective_conv2d)

        # Initialize weights
        if init_weights:
            self.reset_adapter_parameters(adapter_name)
        else:
            self.reset_adapter_parameters_random(adapter_name)

        # Move new weights to device
        weight = getattr(self.get_base_layer(), "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            if weight.dtype.is_floating_point or weight.dtype.is_complex:
                self.to(weight.device, dtype=weight.dtype)
            else:
                self.to(weight.device)
        self.set_adapter(self.active_adapters)

    def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
        # https://github.com/KohakuBlueleaf/LyCORIS/blob/e4259b870d3354a9615a96be61cb5d07455c58ea/lycoris/modules/lokr.py#L224
        if adapter_name in self.lokr_w1:
            w1 = self.lokr_w1[adapter_name]
        else:
            w1 = self.lokr_w1_a[adapter_name] @ self.lokr_w1_b[adapter_name]

        if adapter_name in self.lokr_w2:
            w2 = self.lokr_w2[adapter_name]
        elif adapter_name in self.lokr_t2:
            w2 = make_weight_cp(self.lokr_t2[adapter_name], self.lokr_w2_a[adapter_name], self.lokr_w2_b[adapter_name])
        else:
            w2 = self.lokr_w2_a[adapter_name] @ self.lokr_w2_b[adapter_name]

        # Make weights with Kronecker product
        weight = make_kron(w1, w2)
        weight = weight.reshape(self.get_base_layer().weight.shape)

        # Perform rank dropout during training - drop rows of addition weights
        rank_dropout = self.rank_dropout[adapter_name]
        if self.training and rank_dropout:
            drop = (torch.rand(weight.size(0)) > rank_dropout).float()
            drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
            drop /= drop.mean()
            weight *= drop

        return weight

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)

            # Execute all the adapters
            for active_adapter in self.active_adapters:
                if active_adapter not in self._available_adapters:
                    continue

                module_dropout = self.module_dropout[active_adapter]

                # Modify current execution weights
                if (not self.training) or (self.training and torch.rand(1) > module_dropout):
                    result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs)

        result = result.to(previous_dtype)
        return result


class Linear(LoKrLayer):
    """LoKr implemented in Linear layer"""

    def __init__(
        self,
        base_layer: nn.Module,
        device: Optional[Union[str, torch.device]] = None,
        dtype: Optional[torch.dtype] = None,
        adapter_name: str = "default",
        r: int = 0,
        alpha: float = 0.0,
        rank_dropout: float = 0.0,
        module_dropout: float = 0.0,
        init_weights: bool = True,
        **kwargs,
    ):
        super().__init__(base_layer)

        # Create adapter and set it active
        self._active_adapter = adapter_name
        self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs)

    def _get_delta_activations(
        self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
    ) -> torch.Tensor:
        delta_weight = self.get_delta_weight(adapter_name)
        # don't add bias here, because the bias is already included in the output of the base_layer
        return F.linear(input, delta_weight)

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lokr." + rep


class Conv2d(LoKrLayer):
    """LoKr implemented in Conv2d layer"""

    def __init__(
        self,
        base_layer: nn.Module,
        device: Optional[Union[str, torch.device]] = None,
        dtype: Optional[torch.dtype] = None,
        adapter_name: str = "default",
        r: int = 0,
        alpha: float = 0.0,
        rank_dropout: float = 0.0,
        module_dropout: float = 0.0,
        use_effective_conv2d: bool = False,
        init_weights: bool = True,
        **kwargs,
    ):
        super().__init__(base_layer)

        # Create adapter and set it active
        self._active_adapter = adapter_name
        self.update_layer(
            adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs
        )

    def _get_delta_activations(
        self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
    ) -> torch.Tensor:
        delta_weight = self.get_delta_weight(adapter_name)
        # don't add bias here, because the bias is already included in the output of the base_layer
        base_layer = self.get_base_layer()
        return F.conv2d(
            input,
            delta_weight,
            stride=base_layer.stride,
            padding=base_layer.padding,
            dilation=base_layer.dilation,
            groups=base_layer.groups,
        )

    def __repr__(self) -> str:
        rep = super().__repr__()
        return "lokr." + rep


# Below code is a direct copy from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/lokr.py#L11


def factorization(dimension: int, factor: int = -1) -> Tuple[int, int]:
    """Factorizes the provided number into the product of two numbers

    Args:
        dimension (`int`): The number that needs to be factorized.
        factor (`int`, optional):
            Factorization divider. The algorithm will try to output two numbers, one of each will be as close to the
            factor as possible. If -1 is provided, the decomposition algorithm would try to search dividers near the
            square root of the dimension. Defaults to -1.

    Returns:
        Tuple[`int`, `int`]: A tuple of two numbers, whose product is equal to the provided number. The first number is
        always less than or equal to the second.

    Example:
        ```py
        >>> factorization(256, factor=-1)
        (16, 16)

        >>> factorization(128, factor=-1)
        (8, 16)

        >>> factorization(127, factor=-1)
        (1, 127)

        >>> factorization(128, factor=4)
        (4, 32)
        ```
    """

    if factor > 0 and (dimension % factor) == 0:
        m = factor
        n = dimension // factor
        return m, n
    if factor == -1:
        factor = dimension
    m, n = 1, dimension
    length = m + n
    while m < n:
        new_m = m + 1
        while dimension % new_m != 0:
            new_m += 1
        new_n = dimension // new_m
        if new_m + new_n > length or new_m > factor:
            break
        else:
            m, n = new_m, new_n
    if m > n:
        n, m = m, n
    return m, n


def make_weight_cp(t, wa, wb):
    rebuild2 = torch.einsum("i j k l, i p, j r -> p r k l", t, wa, wb)  # [c, d, k1, k2]
    return rebuild2


def make_kron(w1, w2, scale=1.0):
    if len(w2.shape) == 4:
        w1 = w1.unsqueeze(2).unsqueeze(2)
    w2 = w2.contiguous()
    rebuild = torch.kron(w1, w2)

    return rebuild * scale