File size: 10,602 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import copy
import warnings
from typing import Any, Optional

import torch

from peft.import_utils import is_hqq_available
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.other import transpose

from .layer import LoraLayer


if is_hqq_available():
    from hqq.core.quantize import HQQLinear

    class HqqLoraLinear(torch.nn.Module, LoraLayer):
        # Lora implemented in a dense layer
        def __init__(
            self,
            base_layer: torch.nn.Module,
            adapter_name: str,
            r: int = 0,
            lora_alpha: int = 1,
            lora_dropout: float = 0.0,
            init_lora_weights: bool = True,
            use_rslora: bool = False,
            use_dora: bool = False,
            **kwargs,
        ) -> None:
            super().__init__()
            LoraLayer.__init__(self, base_layer)
            self.fan_in_fan_out = False

            self._active_adapter = adapter_name
            self.update_layer(
                adapter_name,
                r,
                lora_alpha=lora_alpha,
                lora_dropout=lora_dropout,
                init_lora_weights=init_lora_weights,
                use_rslora=use_rslora,
                use_dora=use_dora,
            )

        def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
            """
            Merge the active adapter weights into the base weights

            Args:
                safe_merge (`bool`, *optional*):
                    If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                    before merging the weights. This is useful if you want to check if the merge operation will produce
                    NaNs. Defaults to `False`.
                adapter_names (`list[str]`, *optional*):
                    The list of adapter names that should be merged. If None, all active adapters will be merged.
                    Defaults to `None`.
            """
            adapter_names = check_adapters_to_merge(self, adapter_names)
            if not adapter_names:
                # no adapter to merge
                return

            for active_adapter in adapter_names:
                if active_adapter not in self.lora_A.keys():
                    continue

                layer = self.get_base_layer()
                quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta}
                lora_data = self.get_delta_weight(active_adapter)

                output = layer.dequantize()
                if not self.use_dora[active_adapter]:
                    w_data = output + lora_data
                else:
                    # handle dora
                    # since output already includes scaling, set it to 1 here
                    weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
                    # We need to cache weight_norm because it has to be based on the original weights. We
                    # cannot calculate it on the fly based on the merged weights when unmerging because its a
                    # different value
                    self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    w_data = dora_factor.view(-1, 1) * (output + lora_data)

                if safe_merge and not torch.isfinite(w_data).all():
                    raise ValueError(
                        f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                    )
                new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device)
                quant_config.pop("offload_meta", None)
                new_hqq_layer.quantize(w_data, **quant_config)
                self.base_layer = new_hqq_layer
                self.merged_adapters.append(active_adapter)

        def unmerge(self) -> None:
            """
            This method unmerges all merged adapter layers from the base weights.
            """
            if not self.merged:
                warnings.warn("Already unmerged. Nothing to do.")
                return

            while len(self.merged_adapters) > 0:
                active_adapter = self.merged_adapters.pop()
                if active_adapter not in self.lora_A.keys():
                    continue

                lora_data = self.get_delta_weight(active_adapter)
                layer = self.get_base_layer()
                quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta}
                output = layer.dequantize()

                if not self.use_dora[active_adapter]:
                    w_data = output - lora_data
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    w_data = output.data / dora_factor.view(-1, 1) - lora_data

                new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device)
                quant_config.pop("offload_meta", None)
                new_hqq_layer.quantize(w_data, **quant_config)
                self.base_layer = new_hqq_layer

        def get_delta_weight(self, adapter):
            return (
                transpose(
                    self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
                    False,
                )
                * self.scaling[adapter]
            )

        def _mixed_batch_forward(
            self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
        ) -> torch.Tensor:
            # This is a special method that handles the case when users pass the argument `adapter_names`. This is an
            # extra argument that allows mixing different adapters in the same batch at inference time.
            result = self.base_layer(x, *args, **kwargs)

            unique_adapters = set(adapter_names)
            sub_batch_indices_list = []
            for adapter in unique_adapters:
                sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])

            for i, active_adapter in enumerate(unique_adapters):
                if active_adapter == "__base__":
                    continue
                if active_adapter not in self.lora_A.keys():
                    continue

                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]

                requires_conversion = not torch.is_autocast_enabled()
                if requires_conversion:
                    expected_dtype = result.dtype
                    compute_dtype = lora_A.weight.dtype
                    if x.dtype != compute_dtype:
                        x = x.to(compute_dtype)

                # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
                # layer output
                sub_batch = x[sub_batch_indices_list[i]]
                output = lora_B(lora_A(dropout(sub_batch))) * scaling
                if requires_conversion:
                    output = output.to(expected_dtype)
                result[sub_batch_indices_list[i]] += output

            return result

        def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
            self._check_forward_args(x, *args, **kwargs)
            adapter_names = kwargs.pop("adapter_names", None)

            if self.disable_adapters:
                if self.merged:
                    self.unmerge()
                result = self.base_layer(x, *args, **kwargs)
            elif adapter_names is not None:
                result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
            elif self.merged:
                result = self.base_layer(x, *args, **kwargs)
            else:
                result = self.base_layer(x, *args, **kwargs)

                for active_adapter in self.active_adapters:
                    if active_adapter not in self.lora_A.keys():
                        continue
                    lora_A = self.lora_A[active_adapter]
                    lora_B = self.lora_B[active_adapter]
                    dropout = self.lora_dropout[active_adapter]
                    scaling = self.scaling[active_adapter]

                    requires_conversion = not torch.is_autocast_enabled()
                    if requires_conversion:
                        expected_dtype = result.dtype
                        compute_dtype = lora_A.weight.dtype
                        if x.dtype != compute_dtype:
                            x = x.to(compute_dtype)

                    if not self.use_dora[active_adapter]:
                        output = lora_B(lora_A(dropout(x))) * scaling
                    else:
                        output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
                    if requires_conversion:
                        output = output.to(expected_dtype)

                    result = result + output

            return result

        def __repr__(self) -> str:
            rep = super().__repr__()
            return "lora." + rep


def dispatch_hqq(target: torch.nn.Module, adapter_name: str, **kwargs):
    new_module = None

    if isinstance(target, BaseTunerLayer):
        target_base_layer = target.get_base_layer()
    else:
        target_base_layer = target

    if is_hqq_available() and isinstance(target_base_layer, HQQLinear):
        new_module = HqqLoraLinear(target_base_layer, adapter_name, **kwargs)

    return new_module