# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any import torch import torch.nn as nn from peft.tuners.tuners_utils import BaseTunerLayer from .config import PolyConfig from .router import get_router class PolyLayer(BaseTunerLayer): # All names of layers that may contain (trainable) adapter weights adapter_layer_names = ("poly_lora_A", "poly_lora_B", "poly_router") # All names of other parameters that may contain adapter-related parameters other_param_names = ("r", "n_tasks", "n_skills", "n_splits") def __init__(self, base_layer: nn.Module, **kwargs): self.base_layer = base_layer self.r = {} self.n_tasks = {} self.n_skills = {} self.n_splits = {} self.poly_type = {} self.poly_router = nn.ModuleDict() self.poly_lora_A = nn.ParameterDict() self.poly_lora_B = nn.ParameterDict() self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): in_features, out_features = base_layer.in_features, base_layer.out_features else: raise ValueError(f"Unsupported layer type {type(base_layer)}") self.in_features = in_features self.out_features = out_features def update_layer(self, adapter_name, poly_config): if poly_config.r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {poly_config.r}") self.r[adapter_name] = poly_config.r self.n_tasks[adapter_name] = poly_config.n_tasks self.n_skills[adapter_name] = poly_config.n_skills self.n_splits[adapter_name] = poly_config.n_splits self.poly_type[adapter_name] = poly_config.poly_type self.poly_lora_A[adapter_name] = nn.Parameter( torch.empty( poly_config.n_splits, poly_config.n_skills, self.in_features // poly_config.n_splits, poly_config.r, ) ) self.poly_lora_B[adapter_name] = nn.Parameter( torch.empty( poly_config.n_splits, poly_config.n_skills, poly_config.r, self.out_features // poly_config.n_splits, ) ) self.poly_router[adapter_name] = get_router(poly_config) self.reset_poly_parameters(adapter_name, init_weights=poly_config.init_weights) weight = getattr(self.get_base_layer(), "weight", None) if weight is not None: # the layer is already completely initialized, this is an update if weight.dtype.is_floating_point or weight.dtype.is_complex: self.to(weight.device, dtype=weight.dtype) else: self.to(weight.device) self.set_adapter(self.active_adapters) def reset_poly_parameters(self, adapter_name, init_weights): if adapter_name in self.poly_lora_A.keys(): # initialize A the same way as the default for nn.Linear # https://github.com/microsoft/mttl/blob/ce4ca51dbca73be656feb9b3e5233633e3c5dec7/mttl/models/poly.py#L269 n_splits, n_skills, d, r = self.poly_lora_A[adapter_name].shape for skill in range(n_skills): for split in range(n_splits): param = torch.empty((r, d)) torch.nn.init.kaiming_uniform_(param, a=math.sqrt(5)) self.poly_lora_A[adapter_name].data[split, skill, :, :] = param.T if init_weights: # initialize B to zero torch.nn.init.zeros_(self.poly_lora_B[adapter_name]) else: # initialize B the same way as the default for nn.Linear n_splits, n_skills, r, d = self.poly_lora_B[adapter_name].shape for skill in range(n_skills): for split in range(n_splits): param = torch.empty((d, r)) torch.nn.init.kaiming_uniform_(param, a=math.sqrt(5)) self.poly_lora_B[adapter_name].data[split, skill, :, :] = param.T # initialized router self.poly_router[adapter_name].reset() class Linear(nn.Module, PolyLayer): # Lora implemented in a dense layer def __init__( self, base_layer, adapter_name: str, poly_config: PolyConfig, **kwargs, ) -> None: super().__init__() PolyLayer.__init__(self, base_layer, **kwargs) self._active_adapter = adapter_name self.update_layer(adapter_name, poly_config) def forward(self, x: torch.Tensor, *args: Any, task_ids: torch.Tensor = None, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.poly_lora_A.keys(): continue r = self.r[active_adapter] poly_router = self.poly_router[active_adapter] poly_lora_A = self.poly_lora_A[active_adapter] poly_lora_B = self.poly_lora_B[active_adapter] # Combine the output of LoRAs # https://github.com/microsoft/mttl/blob/ce4ca51dbca73be656feb9b3e5233633e3c5dec7/mttl/models/poly.py#L293 mixing_weights = poly_router(task_ids=task_ids, input_ids=x) bs, n_splits, n_skills = mixing_weights.size() # A is n_splits, n_skills, D // n_splits, rank # we want bs, n_splits, D // n_splits, rank A = torch.einsum("bqs,qsdr->bqdr", (mixing_weights, poly_lora_A)) B = torch.einsum("bqs,qsrd->bqrd", (mixing_weights, poly_lora_B)) A = A.reshape(bs, self.in_features, r) B = B.transpose(1, 2).reshape(bs, r, self.out_features) x = x.to(A.dtype) result += x.bmm(A).bmm(B) / r result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "poly." + rep