# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from typing import Any, List, Optional, Set, Tuple import torch import torch.nn as nn from peft.tuners.lycoris_utils import LycorisLayer, check_adapters_to_merge class OFTLayer(nn.Module, LycorisLayer): # All names of layers that may contain adapter weights adapter_layer_names = ("oft_r",) # other_param_names is defined on parent class def __init__(self, base_layer: nn.Module): super().__init__() LycorisLayer.__init__(self, base_layer) # OFT info self.oft_r = nn.ParameterDict({}) self.coft = {} self.eps = {} self.block_share = {} @property def _available_adapters(self) -> Set[str]: return {*self.oft_r} def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...], block_share: bool): if block_share: self.oft_r[adapter_name] = nn.Parameter(torch.empty(1, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) else: self.oft_r[adapter_name] = nn.Parameter(torch.empty(r, math.ceil(shape[0] / r), math.ceil(shape[0] / r))) def reset_adapter_parameters(self, adapter_name: str): nn.init.zeros_(self.oft_r[adapter_name]) def reset_adapter_parameters_random(self, adapter_name: str): nn.init.kaiming_uniform_(self.oft_r[adapter_name], a=math.sqrt(5)) def update_layer( self, adapter_name: str, r: int, module_dropout: float, init_weights: bool, coft: bool = False, eps: float = 6e-5, block_share: bool = False, **kwargs, ) -> None: """Internal function to create oft adapter Args: adapter_name (`str`): Name for the adapter to add. r (`int`): Rank for the added adapter. module_dropout (`float`): The dropout probability for disabling adapter during training. init_weights (`bool`): Whether to initialize weights. coft (`bool`): Whether to use the constrained variant of OFT or not. eps (`float`): The control strength of COFT. The freedom of rotation. Only has an effect if `coft` is set to True. block_share (`bool`): Whether to share the OFT parameters between blocks or not. """ if r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") self.r[adapter_name] = r self.module_dropout[adapter_name] = module_dropout self.coft[adapter_name] = coft self.block_share[adapter_name] = block_share # Determine shape of OFT weights base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): shape = tuple(base_layer.weight.shape) elif isinstance(base_layer, nn.Conv2d): shape = ( base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], ) else: raise TypeError(f"OFT is not implemented for base layers of type {type(base_layer).__name__}") self.eps[adapter_name] = eps * math.ceil(shape[0] / r) * math.ceil(shape[0] / r) # Create weights with provided shape self.create_adapter_parameters(adapter_name, r, shape, block_share) # Initialize weights if init_weights: self.reset_adapter_parameters(adapter_name) else: self.reset_adapter_parameters_random(adapter_name) # Move new weights to device weight = getattr(self.get_base_layer(), "weight", None) if weight is not None: # the layer is already completely initialized, this is an update if weight.dtype.is_floating_point or weight.dtype.is_complex: self.to(weight.device, dtype=weight.dtype) else: self.to(weight.device) self.set_adapter(self.active_adapters) def unscale_layer(self, scale=None) -> None: # scale is not used pass def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self._available_adapters: base_layer = self.get_base_layer() orig_weights = base_layer.weight.data if isinstance(base_layer, nn.Linear): orig_weights = torch.transpose(orig_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): orig_weights = orig_weights.view( [ base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], ] ) orig_weights = torch.transpose(orig_weights, 0, 1) delta_weight = self.get_delta_weight(active_adapter) if orig_weights.shape[1] != delta_weight.shape[1]: # when in channels is not divisible by r delta_weight = delta_weight[: orig_weights.shape[1], : orig_weights.shape[1]] new_weights = torch.mm(orig_weights, delta_weight) if isinstance(base_layer, nn.Linear): new_weights = torch.transpose(new_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): new_weights = torch.transpose(new_weights, 0, 1) new_weights = new_weights.view( [ base_layer.out_channels, base_layer.in_channels, base_layer.kernel_size[0], base_layer.kernel_size[1], ] ) if safe_merge and not torch.isfinite(new_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = new_weights self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self._available_adapters: base_layer = self.get_base_layer() new_weights = base_layer.weight.data if isinstance(base_layer, nn.Linear): new_weights = torch.transpose(new_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): new_weights = new_weights.view( [ base_layer.out_channels, base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1], ] ) new_weights = torch.transpose(new_weights, 0, 1) delta_weight = self.get_delta_weight(active_adapter) if new_weights.shape[1] != delta_weight.shape[1]: # when in channels is not divisible by r delta_weight = delta_weight[: new_weights.shape[1], : new_weights.shape[1]] delta_inv = torch.inverse(delta_weight) orig_weights = torch.mm(new_weights, delta_inv) if isinstance(base_layer, nn.Linear): orig_weights = torch.transpose(orig_weights, 0, 1) elif isinstance(base_layer, nn.Conv2d): orig_weights = torch.transpose(orig_weights, 0, 1) orig_weights = orig_weights.reshape( [ base_layer.out_channels, base_layer.in_channels, base_layer.kernel_size[0], base_layer.kernel_size[1], ] ) base_layer.weight.data = orig_weights def get_delta_weight(self, adapter_name: str) -> torch.Tensor: rank = self.r[adapter_name] coft = self.coft[adapter_name] eps = self.eps[adapter_name] opt_r = self.oft_r[adapter_name] if coft: with torch.no_grad(): opt_r.copy_(self._project_batch(opt_r, eps=eps)) orth_rotate = self._cayley_batch(opt_r) weight = self._block_diagonal(orth_rotate, rank) return weight # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L144 def _cayley_batch(self, data: torch.Tensor) -> torch.Tensor: b, r, c = data.shape # Ensure the input matrix is skew-symmetric skew = 0.5 * (data - data.transpose(1, 2)) I = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) # noqa: E741 # Perform the Cayley parametrization Q = torch.bmm(I - skew, torch.inverse(I + skew)) return Q # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L155 def _block_diagonal(self, oft_r: torch.Tensor, rank: int) -> torch.Tensor: if oft_r.shape[0] == 1: # block share blocks = [oft_r[0, ...] for i in range(rank)] else: blocks = [oft_r[i, ...] for i in range(rank)] # Use torch.block_diag to create the block diagonal matrix A = torch.block_diag(*blocks) return A # Copied from https://github.com/Zeju1997/oft/blob/84cebb965df69781e3d9c3c875f5980b421eaf24/oft-control/oft.py#L52 def _project_batch(self, oft_r, eps=1e-5): # scaling factor for each of the smaller block matrix eps = eps * 1 / torch.sqrt(torch.tensor(oft_r.shape[0])) I = ( # noqa: E741 torch.zeros((oft_r.size(1), oft_r.size(1)), device=oft_r.device, dtype=oft_r.dtype) .unsqueeze(0) .expand_as(oft_r) ) diff = oft_r - I norm_diff = torch.norm(oft_r - I, dim=(1, 2), keepdim=True) mask = (norm_diff <= eps).bool() out = torch.where(mask, oft_r, I + eps * (diff / norm_diff)) return out def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) if len(result.shape) == 4: result = result.permute(0, 2, 3, 1) base_layer = self.get_base_layer() base_bias = base_layer.bias if base_bias is not None: # Bias should be added after OFT forward result = result - base_bias.data # Execute all the adapters for active_adapter in self.active_adapters: if active_adapter not in self._available_adapters: continue module_dropout = self.module_dropout[active_adapter] # Modify current execution weights if (not self.training) or (self.training and torch.rand(1) > module_dropout): result = self._get_delta_activations(active_adapter, result, *args, **kwargs) if base_bias is not None: result = result + base_bias.data if len(result.shape) == 4: result = result.permute(0, 3, 1, 2) result = result.to(previous_dtype) return result class Linear(OFTLayer): """OFT implemented in Linear layer""" def __init__( self, base_layer: nn.Module, adapter_name: str = "default", r: int = 0, module_dropout: float = 0.0, init_weights: bool = True, **kwargs, ): super().__init__(base_layer) # Create adapter and set it active self._active_adapter = adapter_name self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) def _get_delta_activations( self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any ) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() base_weight = base_layer.weight.data delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]] # don't add bias here, because the bias will be added after OFT forward return torch.matmul(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return "oft." + rep class Conv2d(OFTLayer): """OFT implemented in Conv2d layer""" def __init__( self, base_layer: nn.Module, adapter_name: str = "default", r: int = 0, module_dropout: float = 0.0, init_weights: bool = True, **kwargs, ): super().__init__(base_layer) # Create adapter and set it active self._active_adapter = adapter_name self.update_layer(adapter_name, r, module_dropout, init_weights, **kwargs) def _get_delta_activations( self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any ) -> torch.Tensor: delta_weight = self.get_delta_weight(adapter_name) base_layer = self.get_base_layer() base_weight = base_layer.weight.data delta_weight = delta_weight[: base_weight.shape[0], : base_weight.shape[0]] # don't add bias here, because the bias will be added after OFT forward return torch.matmul(input, delta_weight) def __repr__(self) -> str: rep = super().__repr__() return "oft." + rep