# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The implementation is based on "Parameter-Efficient Orthogonal Finetuning # via Butterfly Factorization" (https://arxiv.org/abs/2311.06243) in ICLR 2024. from __future__ import annotations import math import os import warnings from contextlib import contextmanager from typing import Any, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function from torch.utils.cpp_extension import load from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge _FBD_CUDA = None # this function is a 1:1 copy from accelerate @contextmanager def patch_environment(**kwargs): """ A context manager that will add each keyword argument passed to `os.environ` and remove them when exiting. Will convert the values in `kwargs` to strings and upper-case all the keys. Example: ```python >>> import os >>> from accelerate.utils import patch_environment >>> with patch_environment(FOO="bar"): ... print(os.environ["FOO"]) # prints "bar" >>> print(os.environ["FOO"]) # raises KeyError ``` """ existing_vars = {} for key, value in kwargs.items(): key = key.upper() if key in os.environ: existing_vars[key] = os.environ[key] os.environ[key] = str(value) yield for key in kwargs: key = key.upper() if key in existing_vars: # restore previous value os.environ[key] = existing_vars[key] else: os.environ.pop(key, None) def get_fbd_cuda(): global _FBD_CUDA if _FBD_CUDA is not None: return _FBD_CUDA curr_dir = os.path.dirname(__file__) # need ninja to build the extension try: with patch_environment(CC="gcc", CXX="gcc"): fbd_cuda = load( name="fbd_cuda", sources=[f"{curr_dir}/fbd/fbd_cuda.cpp", f"{curr_dir}/fbd/fbd_cuda_kernel.cu"], verbose=True, # build_directory='/tmp/' # for debugging ) # extra_cuda_cflags = ['-std=c++14', '-ccbin=$$(which gcc-7)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7 import fbd_cuda except Exception as e: warnings.warn(f"Failed to load the CUDA extension: {e}, check if ninja is available.") warnings.warn("Setting boft_n_butterfly_factor to 1 to speed up the finetuning process.") fbd_cuda = None _FBD_CUDA = fbd_cuda return _FBD_CUDA class FastBlockDiag(Function): """ Implements a custom autograd Function for a fast block diagonal operation using CUDA. This function is optimized for 4D tensors where the last two dimensions are equal, representing block diagonal matrices for efficient computation on CUDA devices. """ @staticmethod def forward(ctx, input): """ The forward method for FastBlockDiag. Computes the block diagonal operation on the input tensor using a CUDA-optimized function. This method assumes that the input is a 4D tensor where the last two dimensions are equal, which represent the blocks to be diagonalized. Parameters: ctx: A context object that can be used to stash information for backward computation. input (Tensor): The input tensor of shape (N, D, H, H), where `N` is the batch size, `D` represents one additional dimension (In BOFT, the number of BOFT blocks), and `H` is the size of the square blocks along the last two dimensions (In BOFT, the block size). Returns: Tensor: The resulting tensor after applying the block diagonal operation, will have the shape (N, DxH, DxH). """ output = get_fbd_cuda().forward(input)[0] ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): (input,) = ctx.saved_tensors grad_input = get_fbd_cuda().backward(grad_output, input)[0] return grad_input class MultiplicativeDropoutLayer(nn.Module): """ Implements the multiplicative dropout layer for BOFT. """ def __init__(self, p=0.0): """ Initializes the multiplicative dropout layer. Parameters: p (float): The probability of dropping out a block. Defaults to 0.0. """ super().__init__() self.p = p def forward(self, x): """ Applies multiplicative dropout to the input tensor. Parameters: x (Tensor): The input tensor of shape (N, D, H, H), where `N` is the batch size, `D` represents one additional dimension (In BOFT, the number of BOFT blocks), and `H` is the size of the square blocks along the last two dimensions (In BOFT, the block size). """ if self.training: # Ensure the last two dimensions are the same if x.shape[-1] != x.shape[-2]: raise ValueError("The last two dimensions of input should be the same!") N, D, H, _ = x.shape # Randomly select one from N n_random = torch.randint(0, N, (1,)).item() # Create a mask with 1s for matrices to be replaced with identity and 0s otherwise num_to_replace = int(self.p * D) num_zeros = D - num_to_replace # Generate a flat tensor with desired number of 1s and 0s mask = torch.cat([torch.ones(num_to_replace, device=x.device), torch.zeros(num_zeros, device=x.device)]) # Shuffle and reshape the mask mask = mask[torch.randperm(D)].view(1, D, 1, 1) full_mask = torch.zeros(N, D, 1, 1, device=x.device) full_mask[n_random] = mask # Use the mask to combine original matrices and identity matrices eye_matrix = torch.eye(H, device=x.device).repeat(N, D, 1, 1) x = (1 - full_mask) * x + full_mask * eye_matrix return x class BOFTLayer(BaseTunerLayer): """ Implements the BOFT layer. """ # All names of layers that may contain (trainable) adapter weights adapter_layer_names = ("boft_R", "boft_s") # All names of other parameters that may contain adapter-related parameters other_param_names = ("boft_block_size", "boft_block_num", "boft_dropout") def __init__(self, base_layer: nn.Module, **kwargs) -> None: """ Initializes the BOFT layer. Note, currently only support linear layer and convolutional layer, with further support for other layers to be added soon. Parameters: base_layer: the pretrained model layer """ self.base_layer = base_layer self.boft_block_size = {} self.boft_block_num = {} self.boft_dropout = nn.ModuleDict({}) self.boft_R = nn.ParameterDict({}) self.boft_s = nn.ParameterDict({}) # Mark the weight as unmerged self._disable_adapters = False self.merged_adapters = [] self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): in_features, out_features = base_layer.in_features, base_layer.out_features elif isinstance(base_layer, nn.Conv2d): in_features, out_features = base_layer.in_channels, base_layer.out_channels else: raise ValueError(f"Unsupported layer type {type(base_layer)}") self.in_features = in_features self.out_features = out_features def set_scale(self, adapter, scale): if adapter not in self.scaling: # Ignore the case where the adapter is not in the layer return warnings.warn("Scaling operation for BOFT not supported! Automatically set scale to 1.") def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue warnings.warn("Scaling operation for BOFT not supported! Automatically set scale to 1.") def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue warnings.warn("Unscaling operation for BOFT not supported! Keeping scale to 1.") def update_layer( self, adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights ): """ Update the linear layer with trainable BOFT weights. Override for other layer types. """ # to be consistent with the paper notation boft_n_butterfly_factor = boft_n_butterfly_factor - 1 if boft_n_butterfly_factor < 0: raise ValueError( f"You can only specify boft_n_butterfly_factor {boft_n_butterfly_factor+1} to be a positive integer number." ) # Initialize the MultiplicativeDropoutLayer for boft_dropout > 0.0. if boft_dropout > 0.0: boft_dropout_layer = MultiplicativeDropoutLayer(p=boft_dropout) else: boft_dropout_layer = nn.Identity() self.boft_dropout.update(nn.ModuleDict({adapter_name: boft_dropout_layer})) if boft_block_size == 0 and boft_block_num != 0: if self.in_features % boft_block_num != 0: raise ValueError( f"in_features ({self.in_features}) must be divisible by boft_block_num ({boft_block_num})!" ) if boft_n_butterfly_factor != 0: if boft_n_butterfly_factor > int(math.log2(boft_block_num)): raise ValueError( f"Invalid combination of boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_num ({boft_block_num})!" ) if boft_block_num % (2**boft_n_butterfly_factor) != 0: raise ValueError( f"boft_block_num ({boft_block_num}) must be a multiple of 2 raised to the power of boft_n_butterfly_factor ({boft_n_butterfly_factor+1})!" ) boft_block_size = int(self.in_features // boft_block_num) elif boft_block_size != 0 and boft_block_num == 0: if self.in_features % boft_block_size != 0: raise ValueError( f"in_features ({self.in_features}) must be divisible by boft_block_size ({boft_block_size})!" ) if boft_n_butterfly_factor != 0: if self.in_features < (boft_block_size * (2**boft_n_butterfly_factor)): raise ValueError( f"Invalid combination of in_features ({self.in_features}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!" ) if self.in_features % (boft_block_size * (2**boft_n_butterfly_factor)) != 0: raise ValueError( f"Invalid combination of in_features ({self.in_features}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!" ) boft_block_num = int(self.in_features // boft_block_size) else: raise ValueError( f"You can only specify either boft_block_size ({boft_block_size}) or boft_block_num ({boft_block_num}), but not both simultaneously or setting both" "to be 0, because boft_block_size x boft_block_num != in_features." ) # In OFT you can specify the number of blocks to be 1 if boft_n_butterfly_factor != 0: if boft_block_num % 2 != 0: raise ValueError(f"boft_block_num ({boft_block_num}) must be an even number!") if boft_block_size % 2 != 0: raise ValueError(f"boft_block_size ({boft_block_size}) must be an even number!") # If there is no butterfly factor, then permutation matrix P will be an identity matrix. P = torch.empty((boft_n_butterfly_factor + 1, self.in_features, self.in_features)) for i in range(boft_n_butterfly_factor + 1): perm = self.block_butterfly_perm( self.in_features, int(boft_block_num / (2 ** (i))), int(boft_block_size / 2), boft_n_butterfly_factor ) perm_mat = self.perm2mat(perm) P[i] = perm_mat self.register_buffer("boft_P", P) self.boft_R[adapter_name] = nn.Parameter( torch.zeros(boft_n_butterfly_factor + 1, boft_block_num, boft_block_size, boft_block_size) ) self.boft_s[adapter_name] = nn.Parameter(torch.ones(int(self.out_features), 1)) self.reset_boft_parameters(adapter_name, init_weights) weight = getattr(self, "weight", None) if weight is not None: # the layer is already completely initialized, this is an update if weight.dtype.is_floating_point or weight.dtype.is_complex: self.to(weight.device, dtype=weight.dtype) else: self.to(weight.device) # set the boft block size and number self.boft_block_size[adapter_name] = boft_block_size self.boft_block_num[adapter_name] = boft_block_num self.set_adapter(self.active_adapters) def reset_boft_parameters(self, adapter_name, init_weights): """ Reset the BOFT parameters. """ if init_weights is False: nn.init.normal_(self.boft_R[adapter_name], mean=0.0, std=0.1) nn.init.normal_(self.boft_s[adapter_name], mean=1.0, std=0.1) return if adapter_name in self.boft_R.keys(): if init_weights is True: # initialize R to zero nn.init.zeros_(self.boft_R[adapter_name]) nn.init.ones_(self.boft_s[adapter_name]) else: raise ValueError(f"Unknown initialization {init_weights=}") def perm2mat(self, indices): """ Convert permutation indices to permutation matrix. Args: indices: A list of indices representing the permutation. """ # Number of indices determines the size of the square matrix n = len(indices) # Initialize a matrix of zeros perm_mat = torch.zeros((n, n)) # Set the 1s according to the indices for i, idx in enumerate(indices): perm_mat[i, idx] = 1 return perm_mat def block_butterfly_perm(self, n, b, r=3, n_butterfly_factor=1): """ Define the permutation matrix for the block butterfly permutation. Args: n: size of the permutation matrix b: desired number of blocks after multiplying with the permutation matrix r: base block size of the block diagonal matrix, e.g. 2x2, 3x3, 5x5 etc. """ if n_butterfly_factor == 0: return torch.arange(n) if b * r * 2 > n: raise ValueError("Invalid number of blocks!") block_size = int(n // b) indices = torch.arange(n) def sort_block(b, r): step = b / r initial_order = torch.arange(b) sorted_order = torch.empty(b, dtype=torch.long) evens = torch.arange(0, step, 2) odds = torch.arange(1, step, 2) sorted_seq = torch.cat((evens, odds), dim=0) for i, pos in enumerate(sorted_seq): sorted_order[int(i * r) : int(i * r + r)] = initial_order[int(pos * r) : int(pos * r + r)] return sorted_order sorted_order = sort_block(block_size, r) for i in range(0, n, block_size): block_end = i + block_size tmp_indices = indices[i:block_end] indices[i:block_end] = tmp_indices[sorted_order] return indices def cayley_batch(self, data): """ Perform the Cayley parametrization on a batch of skew-symmetric matrices. Args: data: A batch of skew-symmetric matrices of shape (b, r, c). """ b, r, c = data.shape # Ensure the input matrix is skew-symmetric skew_mat = 0.5 * (data - data.transpose(1, 2)) id_mat = torch.eye(r, device=data.device).unsqueeze(0).expand(b, r, c) # Perform the Cayley parametrization Q = torch.linalg.solve(id_mat + skew_mat, id_mat - skew_mat, left=False) return Q class Linear(nn.Module, BOFTLayer): """ BOFT implemented in a dense layer. """ def __init__( self, base_layer, adapter_name: str, boft_block_size: int = 8, boft_block_num: int = 0, boft_n_butterfly_factor: int = 0, boft_dropout: float = 0.1, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) init_weights: Union[bool, str] = True, is_target_conv_1d_layer: bool = False, **kwargs, ) -> None: super().__init__() BOFTLayer.__init__(self, base_layer, **kwargs) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name # Attempt to load the CUDA extension during model initialization if not get_fbd_cuda(): self.fbd_cuda_available = False # If the CUDA extension is not available, set the butterfly factor to 1 to speed up the finetuning process boft_n_butterfly_factor = 1 else: self.fbd_cuda_available = True self.update_layer( adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights ) self.is_target_conv_1d_layer = is_target_conv_1d_layer def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.boft_R.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weight = base_layer.weight.data.clone() butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter) orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = orig_weight * boft_s if not torch.isfinite(orig_weight).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) self.base_layer.weight.data = orig_weight else: butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter) orig_weight = base_layer.weight.data.clone() orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = orig_weight * boft_s self.base_layer.weight.data = orig_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.boft_R.keys(): butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter) orig_weight = self.get_base_layer().weight.data.clone() orig_weight = torch.transpose(orig_weight, 0, 1) orig_weight = torch.mm(butterfly_oft_mat.t(), orig_weight) orig_weight = torch.transpose(orig_weight, 0, 1) self.get_base_layer().weight.data = orig_weight * (1 / boft_s) def get_delta_weight(self, adapter) -> tuple[torch.Tensor, torch.Tensor]: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ boft_R = self.boft_R[adapter] boft_s = self.boft_s[adapter] N, D, H, _ = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat return butterfly_oft_mat, boft_s def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: boft_rotation = torch.eye(self.in_features, device=x.device) boft_scale = torch.ones((int(self.out_features), 1), device=x.device) for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue boft_R = self.boft_R[active_adapter] boft_s = self.boft_s[active_adapter] dropout = self.boft_dropout[active_adapter] N, D, H, _ = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) orth_rotate_butterfly = dropout(orth_rotate_butterfly) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat boft_rotation = butterfly_oft_mat @ boft_rotation boft_scale = boft_s * boft_scale x = x.to(self.get_base_layer().weight.data.dtype) orig_weight = self.get_base_layer().weight.data orig_weight = torch.transpose(orig_weight, 0, 1) rotated_weight = torch.mm(boft_rotation, orig_weight) rotated_weight = torch.transpose(rotated_weight, 0, 1) scaled_rotated_weight = rotated_weight * boft_scale result = F.linear(input=x, weight=scaled_rotated_weight, bias=self.base_layer.bias) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "boft." + rep class Conv2d(nn.Module, BOFTLayer): """ BOFT implemented in a Conv2d layer. """ def __init__( self, base_layer: nn.Module, adapter_name: str, boft_block_size: int = 8, boft_block_num: int = 0, boft_n_butterfly_factor: int = 0, boft_dropout: float = 0.1, init_weights: Union[bool, str] = True, **kwargs, ) -> None: super().__init__() BOFTLayer.__init__(self, base_layer) self._active_adapter = adapter_name # Attempt to load the CUDA extension during model initialization if not get_fbd_cuda(): self.fbd_cuda_available = False # If the CUDA extension is not available, set the butterfly factor to 1 to speed up the finetuning process boft_n_butterfly_factor = 1 else: self.fbd_cuda_available = True self.update_layer( adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights ) def update_layer( self, adapter_name, boft_block_size, boft_block_num, boft_n_butterfly_factor, boft_dropout, init_weights ): """ Update the conv2d layer with trainable BOFT weights. """ # to be consistent with the paper notation boft_n_butterfly_factor = boft_n_butterfly_factor - 1 if boft_n_butterfly_factor < 0: raise ValueError( f"You can only specify boft_n_butterfly_factor {boft_n_butterfly_factor+1} to be a positive integer number." ) # Initialize the MultiplicativeDropoutLayer for boft_dropout > 0.0. if boft_dropout > 0.0: boft_dropout_layer = MultiplicativeDropoutLayer(p=boft_dropout) else: boft_dropout_layer = nn.Identity() self.boft_dropout.update(nn.ModuleDict({adapter_name: boft_dropout_layer})) # layer information from the base layer base_layer = self.get_base_layer() conv_filter_dim = self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0] # Initialize the BOFT parameters. if not (boft_block_size != 0) ^ (boft_block_num != 0): raise ValueError( f"You can only specify either boft_block_size ({boft_block_size}) or boft_block_num ({boft_block_num}), but not both simultaneously, because boft_block_size x boft_block_num != in_features." ) if boft_block_size == 0 and boft_block_num != 0: if conv_filter_dim % boft_block_num != 0: raise ValueError( f"Convolutional kernel dimension ({conv_filter_dim}) must be divisible by boft_block_num ({boft_block_num})!" ) if boft_n_butterfly_factor != 0: if boft_n_butterfly_factor > int(math.log2(boft_block_num)): raise ValueError( f"Invalid combination of boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_num ({boft_block_num})!" ) if boft_block_num % (2**boft_n_butterfly_factor) != 0: raise ValueError( f"boft_block_num ({boft_block_num}) must be a multiple of 2 raised to the power of boft_n_butterfly_factor ({boft_n_butterfly_factor+1})!" ) boft_block_size = int(conv_filter_dim // boft_block_num) elif boft_block_size != 0 and boft_block_num == 0: if conv_filter_dim % boft_block_size != 0: raise ValueError( f"Convolutional kernel dimension ({conv_filter_dim}) must be divisible by boft_block_size ({boft_block_size})!" ) if boft_n_butterfly_factor != 0: if conv_filter_dim < (boft_block_size * (2**boft_n_butterfly_factor)): raise ValueError( f"Invalid combination of convolutional kernel dimension ({conv_filter_dim}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!" ) if conv_filter_dim % (boft_block_size * (2**boft_n_butterfly_factor)) != 0: raise ValueError( f"Invalid combination of convolutional kernel dimension ({conv_filter_dim}), boft_n_butterfly_factor ({boft_n_butterfly_factor+1}) and boft_block_size ({boft_block_size})!" ) boft_block_num = int(conv_filter_dim // boft_block_size) else: raise ValueError("Unknown error!") # In OFT you can specify the number of blocks to be 1 if boft_n_butterfly_factor != 0: if boft_block_num % 2 != 0: raise ValueError(f"boft_block_num ({boft_block_num}) must be an even number!") if boft_block_size % 2 != 0: raise ValueError(f"boft_block_size ({boft_block_size}) must be an even number!") # If there is no butterfly factor, then permutation matrix P will be an identity matrix. P = torch.empty((boft_n_butterfly_factor + 1, conv_filter_dim, conv_filter_dim)) for i in range(boft_n_butterfly_factor + 1): perm = self.block_butterfly_perm( conv_filter_dim, int(boft_block_num / (2 ** (i))), int(boft_block_size / 2), boft_n_butterfly_factor ) perm_mat = self.perm2mat(perm) P[i] = perm_mat self.register_buffer("boft_P", P) self.boft_R[adapter_name] = nn.Parameter( torch.zeros(boft_n_butterfly_factor + 1, boft_block_num, boft_block_size, boft_block_size) ) self.boft_s[adapter_name] = nn.Parameter(torch.ones(1, int(self.out_features))) self.reset_boft_parameters(adapter_name, init_weights) weight = getattr(self, "weight", None) if weight is not None: # the layer is already completely initialized, this is an update if weight.dtype.is_floating_point or weight.dtype.is_complex: self.to(weight.device, dtype=weight.dtype) else: self.to(weight.device) self.set_adapter(self.active_adapters) # set the boft block size and number self.boft_block_size[adapter_name] = boft_block_size self.boft_block_num[adapter_name] = boft_block_num def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.boft_R.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weight = base_layer.weight.data.clone() butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter) orig_weight = orig_weight.view( self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], self.out_features ) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = orig_weight * boft_s orig_weight = orig_weight.view( self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0] ) self.base_layer.weight.data = orig_weight else: butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter) orig_weight = base_layer.weight.data.clone() orig_weight = orig_weight.view( self.in_features * base_layer.kernel_size[0] * base_layer.kernel_size[0], self.out_features ) orig_weight = torch.mm(butterfly_oft_mat, orig_weight) orig_weight = orig_weight * boft_s orig_weight = orig_weight.view( self.out_features, self.in_features, base_layer.kernel_size[0], base_layer.kernel_size[0] ) self.base_layer.weight.data = orig_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.boft_R.keys(): butterfly_oft_mat, boft_s = self.get_delta_weight(active_adapter) orig_weight = self.get_base_layer().weight.data.clone() orig_weight = orig_weight.view( self.in_features * self.get_base_layer().kernel_size[0] * self.get_base_layer().kernel_size[0], self.out_features, ) orig_weight = torch.mm(butterfly_oft_mat.t(), orig_weight) orig_weight = orig_weight * (1 / boft_s) orig_weight = orig_weight.view( self.out_features, self.in_features, self.get_base_layer().kernel_size[0], self.get_base_layer().kernel_size[0], ) self.get_base_layer().weight.data = orig_weight def get_delta_weight(self, adapter) -> tuple[torch.Tensor, torch.Tensor]: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ boft_R = self.boft_R[adapter] boft_s = self.boft_s[adapter] N, D, H, _ = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat return butterfly_oft_mat, boft_s def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: boft_rotation = torch.eye( self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], device=x.device ) boft_scale = torch.ones((1, int(self.out_features)), device=x.device) for active_adapter in self.active_adapters: if active_adapter not in self.boft_R.keys(): continue boft_R = self.boft_R[active_adapter] boft_s = self.boft_s[active_adapter] dropout = self.boft_dropout[active_adapter] N, D, H, _ = boft_R.shape boft_R = boft_R.view(N * D, H, H) orth_rotate_butterfly = self.cayley_batch(boft_R) orth_rotate_butterfly = orth_rotate_butterfly.view(N, D, H, H) orth_rotate_butterfly = dropout(orth_rotate_butterfly) if self.fbd_cuda_available: block_diagonal_butterfly = FastBlockDiag.apply(orth_rotate_butterfly) else: orth_rotate_butterfly = orth_rotate_butterfly.squeeze(0) block_diagonal_butterfly = torch.block_diag(*torch.unbind(orth_rotate_butterfly)) block_diagonal_butterfly = block_diagonal_butterfly.unsqueeze(0) butterfly_oft_mat_batch = torch.bmm(block_diagonal_butterfly, self.boft_P.permute(0, 2, 1)) butterfly_oft_mat_batch = torch.bmm(self.boft_P, butterfly_oft_mat_batch) butterfly_oft_mat = butterfly_oft_mat_batch[0] for i in range(1, butterfly_oft_mat_batch.shape[0]): butterfly_oft_mat = butterfly_oft_mat_batch[i] @ butterfly_oft_mat boft_rotation = butterfly_oft_mat @ boft_rotation boft_scale = boft_s * boft_scale x = x.to(self.base_layer.weight.data.dtype) orig_weight = self.base_layer.weight.data orig_weight = orig_weight.view( self.in_features * self.base_layer.kernel_size[0] * self.base_layer.kernel_size[0], self.out_features, ) rotated_weight = torch.mm(boft_rotation, orig_weight) scaled_rotated_weight = rotated_weight * boft_scale scaled_rotated_weight = scaled_rotated_weight.view( self.out_features, self.in_features, self.base_layer.kernel_size[0], self.base_layer.kernel_size[0] ) result = F.conv2d( input=x, weight=scaled_rotated_weight, bias=self.base_layer.bias, padding=self.base_layer.padding[0], stride=self.base_layer.stride[0], ) result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "boft." + rep