# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import warnings from typing import Any, Optional import torch from peft.import_utils import is_hqq_available from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils.other import transpose from .layer import LoraLayer if is_hqq_available(): from hqq.core.quantize import HQQLinear class HqqLoraLinear(torch.nn.Module, LoraLayer): # Lora implemented in a dense layer def __init__( self, base_layer: torch.nn.Module, adapter_name: str, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: bool = True, use_rslora: bool = False, use_dora: bool = False, **kwargs, ) -> None: super().__init__() LoraLayer.__init__(self, base_layer) self.fan_in_fan_out = False self._active_adapter = adapter_name self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, ) def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter not in self.lora_A.keys(): continue layer = self.get_base_layer() quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta} lora_data = self.get_delta_weight(active_adapter) output = layer.dequantize() if not self.use_dora[active_adapter]: w_data = output + lora_data else: # handle dora # since output already includes scaling, set it to 1 here weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach() # We need to cache weight_norm because it has to be based on the original weights. We # cannot calculate it on the fly based on the merged weights when unmerging because its a # different value self._cache_store(f"{active_adapter}-weight_norm", weight_norm) dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm w_data = dora_factor.view(-1, 1) * (output + lora_data) if safe_merge and not torch.isfinite(w_data).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) quant_config.pop("offload_meta", None) new_hqq_layer.quantize(w_data, **quant_config) self.base_layer = new_hqq_layer self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter not in self.lora_A.keys(): continue lora_data = self.get_delta_weight(active_adapter) layer = self.get_base_layer() quant_config = {**copy.deepcopy(layer.quant_config), "offload_meta": layer.offload_meta} output = layer.dequantize() if not self.use_dora[active_adapter]: w_data = output - lora_data else: weight_norm = self._cache_pop(f"{active_adapter}-weight_norm") dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm w_data = output.data / dora_factor.view(-1, 1) - lora_data new_hqq_layer = HQQLinear(None, quant_config, compute_dtype=layer.compute_dtype, device=layer.device) quant_config.pop("offload_meta", None) new_hqq_layer.quantize(w_data, **quant_config) self.base_layer = new_hqq_layer def get_delta_weight(self, adapter): return ( transpose( self.lora_B[adapter].weight @ self.lora_A[adapter].weight, False, ) * self.scaling[adapter] ) def _mixed_batch_forward( self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any ) -> torch.Tensor: # This is a special method that handles the case when users pass the argument `adapter_names`. This is an # extra argument that allows mixing different adapters in the same batch at inference time. result = self.base_layer(x, *args, **kwargs) unique_adapters = set(adapter_names) sub_batch_indices_list = [] for adapter in unique_adapters: sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter]) for i, active_adapter in enumerate(unique_adapters): if active_adapter == "__base__": continue if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear # layer output sub_batch = x[sub_batch_indices_list[i]] output = lora_B(lora_A(dropout(sub_batch))) * scaling if requires_conversion: output = output.to(expected_dtype) result[sub_batch_indices_list[i]] += output return result def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: self._check_forward_args(x, *args, **kwargs) adapter_names = kwargs.pop("adapter_names", None) if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif adapter_names is not None: result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype compute_dtype = lora_A.weight.dtype if x.dtype != compute_dtype: x = x.to(compute_dtype) if not self.use_dora[active_adapter]: output = lora_B(lora_A(dropout(x))) * scaling else: output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter) if requires_conversion: output = output.to(expected_dtype) result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep def dispatch_hqq(target: torch.nn.Module, adapter_name: str, **kwargs): new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_hqq_available() and isinstance(target_base_layer, HQQLinear): new_module = HqqLoraLinear(target_base_layer, adapter_name, **kwargs) return new_module