# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy import logging import os import re import warnings from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, Optional, Union import torch from accelerate.hooks import AlignDevicesHook from accelerate.utils import named_module_tensors, offload_state_dict from torch import nn from transformers import PreTrainedModel from transformers.pytorch_utils import Conv1D from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND from ..config import PeftConfig from ..utils import ModulesToSaveWrapper, _get_submodules logger = logging.getLogger(__name__) @contextmanager def onload_layer(layer): r""" A utility for modifying a module containing one or more tuners and a base layer, any of which are offloaded to the CPU or disk. Moves a module's sub-modules to the execution device before some action is performed, after that the base layer state dictionary is re-assigned (if that layer was offloaded to the disk) and finally the parameters are offloaded. If the module has no offloaded sub-modules, this function does nothing. Args: layer ('torch.nn.Module'): layer with tuners to be merged """ offloaded_modules = [] for name, module in layer.named_modules(): if name in ["", "base_layer"]: continue if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload: module._hf_hook.pre_forward(module) offloaded_modules.append(module) base_layer_offload = False if hasattr(layer, "base_layer") and ( hasattr(layer.base_layer, "_hf_hook") and isinstance(layer.base_layer._hf_hook, AlignDevicesHook) and layer.base_layer._hf_hook.offload ): # check if the base layer is disk-offloaded (must contain a 'dataset' and an offload index) if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values() and hasattr( layer.base_layer._hf_hook.weights_map, "dataset" ): # find the disk-offload index (maps modules to safetensors) from the `dataset` (OffloadedWeightsLoader object) index = layer.base_layer._hf_hook.weights_map.dataset.index module_name = list(dict(layer.base_layer._hf_hook.weights_map.dataset).keys())[0] # any module will do file_name = index[module_name]["safetensors_file"] base_name_arr = [] # get effective dir name for i in os.path.split(file_name): if "--" in i: base_name_arr.append(i) break base_name_arr.append(i) base_name = os.path.join(*base_name_arr) safetensors_filename = base_name + "-merged" layer.base_layer._hf_hook.pre_forward(layer.base_layer) base_layer_offload = True yield for module in offloaded_modules: module._hf_hook.post_forward(module, torch.tensor([])) if base_layer_offload: # re-make weights map (must be on cpu to send params to the disk via memmap if disk offload) layer.base_layer._hf_hook.weights_map = { name: param.to("cpu") for name, param in named_module_tensors(layer.base_layer) } # offload weights map to disk if original device is the disk if torch.device("meta") in layer.base_layer._hf_hook.original_devices.values() and hasattr( layer.base_layer._hf_hook.weights_map, "dataset" ): # rewrite directory with merged weights offload_state_dict(safetensors_filename, layer.base_layer._hf_hook.weights_map) layer.base_layer._hf_hook.post_forward(layer.base_layer, torch.tensor([])) class BaseTuner(nn.Module, ABC): r""" A base tuner model that provides the common methods and attributes for all tuners that are injectable into a torch.nn.Module For adding a new Tuner class, one needs to overwrite the following methods: - **_prepare_adapter_config**: A private method to eventually prepare the adapter config, for example in case the field `target_modules` is missing. - **_create_and_replace**: A private method to create and replace the target module with the adapter module. - **_check_target_module_exists**: A private helper method to check if the passed module's key name matches any of the target modules in the adapter_config. The easiest is to check what is done in the `peft.tuners.lora.LoraModel` class. Attributes: model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached. forward (`Callable`): The forward method of the model. peft_config (`Union[`PeftConfig`, dict[str, PeftConfig]]`): The adapter configuration object, it should be a dictionary of `str` to `PeftConfig` objects. One can also pass a PeftConfig object and a new adapter will be created with the default name `adapter` or create a new dictionary with a key `adapter_name` and a value of that peft config. config (`dict[str, Any]`): The model configuration object, it should be a dictionary of `str` to `Any` objects. targeted_module_names (`list[str]`): The list of module names that were actually adapted. Can be useful to inspect if you want to quickly double-check that the `config.target_modules` where specified correctly. """ def __init__(self, model, peft_config: Union[PeftConfig, dict[str, PeftConfig]], adapter_name: str) -> None: super().__init__() self.model = model self.targeted_module_names: list[str] = [] # For advanced developers, if you want to attach multiple adapters to your # model, just add a `peft_config` dict attribute to your model. if not hasattr(self, "peft_config"): self.peft_config = {adapter_name: peft_config} if isinstance(peft_config, PeftConfig) else peft_config else: logger.info( "Already found a `peft_config` attribute in the model. This will lead to having multiple adapters" " in the model. Make sure to know what you are doing!" ) if isinstance(peft_config, PeftConfig): self.peft_config[adapter_name] = peft_config else: # user is adding a dict of PeftConfigs self.peft_config.update(peft_config) self.active_adapter: str | list[str] = adapter_name self._pre_injection_hook(self.model, self.peft_config[adapter_name], adapter_name) self.inject_adapter(self.model, adapter_name) # Copy the peft_config in the injected model. self.model.peft_config = self.peft_config @property def active_adapters(self) -> list[str]: if isinstance(self.active_adapter, str): return [self.active_adapter] # is already a list of str return self.active_adapter def forward(self, *args: Any, **kwargs: Any): return self.model.forward(*args, **kwargs) def _pre_injection_hook(self, model: nn.Module, config: PeftConfig, adapter_name: str) -> None: r""" A hook to be called before the adapter is injected into the model. This method can be overridden by child classes to perform any pre-injection operations. Args: model (`nn.Module`): The model to be adapted. config (`PeftConfig`): The adapter config. adapter_name (`str`): The adapter name. """ pass @abstractmethod def _prepare_adapter_config(self, peft_config: PeftConfig, model_config: dict) -> PeftConfig: r""" A private method to eventually prepare the adapter config. For transformers based models, if `peft_config.target_modules` is None, we can automatically infer the target modules from the `TRANSFORMERS_MODELS_TO_XXX_TARGET_MODULES_MAPPING`. This method can be further refactored in the future to automatically infer it for all tuner models. Check out `peft.tuner.lora.LoraModel._prepare_adapter_config` for an example. Args: peft_config (`PeftConfig`): The adapter config. model_config (`dict`): The transformers model config, that config should contain the `model_type` key. """ ... def _prepare_model(self, peft_config: PeftConfig, model: nn.Module): r""" A private method to modify the model structure before adapter is applied. See `peft.tuner.lora.LoraModel._prepare_model` for an example. Args: peft_config (`PeftConfig`): The prepared adapter config. model (`nn.Module`): The model that is going to be adapted. """ pass @abstractmethod def _check_target_module_exists(peft_config: PeftConfig, key: str) -> bool: r""" A helper private method to check if the passed module's key name matches any of the target modules in the `peft_config.target_modules` list. If it does, return `True`, else return `False`. Args: peft_config (`PeftConfig`): The adapter config. key (`str`): The module's key name. """ ... @abstractmethod def _create_and_replace( self, peft_config: PeftConfig, adapter_name: str, target: nn.Module, target_name: str, parent: nn.Module, current_key: str, ) -> None: r""" Inplace replacement of the target module with the adapter layer. This method needs to be overridden by all the tuner classes. Check `peft.tuners.lora.LoraModel._create_and_replace` for an example. Args: peft_config (`PeftConfig`): The adapter config. adapter_name (`str`): The adapter name. target (`nn.Module`): The target module. target_name (`str`): The target module's name. parent (`nn.Module`): The parent module. current_key (`str`): The key of the current target being adapted. """ ... @abstractmethod def _mark_only_adapters_as_trainable(self, model: nn.Module): r""" A helper method to mark only the adapter layers as trainable (i.e. module.requires_grad = False) This needs to be overridden for all tuner classes to match the correct key names. Check `peft.tuners.lora.LoraModel._mark_only_adapters_as_trainable` for an example. """ ... @abstractmethod def disable_adapter_layers(self) -> None: """ Disable all adapters in-place. """ ... @abstractmethod def enable_adapter_layers(self) -> None: """ Enable all adapters in-place """ ... def _check_new_adapter_config(self, config: PeftConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ pass def _check_merge_allowed(self): """Helper method to check whether the adapter can be merged. Raise a ValueError if it is not possible to merge the adapter with the given configuration. """ pass def inject_adapter(self, model: nn.Module, adapter_name: str): r""" Creates adapter layers and replaces the target modules with the adapter layers. This method is called under the hood by `peft.mapping.get_peft_model` if a non-prompt tuning adapter class is passed. The corresponding PEFT config is directly retrieved from the `peft_config` attribute of the BaseTuner class. Args: model (`nn.Module`): The model to be tuned. adapter_name (`str`): The adapter name. """ peft_config = self.peft_config[adapter_name] # Note: If possible, all checks should be performed *at the start of this method*. # This way, we can raise early if something goes wrong, without leaving the model # in a bad (half-initialized) state. self._check_new_adapter_config(peft_config) _check_for_modules_to_save = getattr(peft_config, "modules_to_save", None) is not None _has_modules_to_save = False model_config = getattr(model, "config", {"model_type": "custom"}) if hasattr(model_config, "to_dict"): model_config = model_config.to_dict() peft_config = self._prepare_adapter_config(peft_config, model_config) self._prepare_model(peft_config, model) is_target_modules_in_base_model = False key_list = [key for key, _ in model.named_modules()] # update peft_config.target_modules if required peft_config = _maybe_include_all_linear_layers(peft_config, model) for key in key_list: # Check for modules_to_save in case if _check_for_modules_to_save and any( key.endswith(f"{module_to_save}") for module_to_save in peft_config.modules_to_save ): # Optionally set the modules to save parent, target, target_name = _get_submodules(model, key) if not isinstance(target, ModulesToSaveWrapper): new_module = ModulesToSaveWrapper(target, adapter_name) setattr(parent, target_name, new_module) else: target.update(adapter_name) _has_modules_to_save = True continue if not self._check_target_module_exists(peft_config, key): continue self.targeted_module_names.append(key) is_target_modules_in_base_model = True parent, target, target_name = _get_submodules(model, key) self._create_and_replace(peft_config, adapter_name, target, target_name, parent, current_key=key) if not is_target_modules_in_base_model: raise ValueError( f"Target modules {peft_config.target_modules} not found in the base model. " f"Please check the target modules and try again." ) # It's important to set the adapter here (again), because otherwise it can happen that if a 2nd adapter is # added, and it targets different layer(s) than the first adapter (which is active), then those different # layers will be activated, which we don't want. self.set_adapter(self.active_adapters) self._mark_only_adapters_as_trainable(model) if self.peft_config[adapter_name].inference_mode: for n, p in model.named_parameters(): if adapter_name in n: p.requires_grad = False if _has_modules_to_save: if not hasattr(model, "modules_to_save"): model.modules_to_save = set(peft_config.modules_to_save) else: model.modules_to_save.update(set(peft_config.modules_to_save)) def merge_adapter(self, adapter_names: Optional[list[str]] = None) -> None: """ This method merges the adapter layers into the base model. Merging adapters can lead to a speed up of the forward pass. A copy of the adapter weights is still kept in memory, which is required to unmerge the adapters. In order to merge the adapter weights without keeping them in memory, please call `merge_and_unload`. Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`list[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ self._check_merge_allowed() for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.merge(adapter_names=adapter_names) def unmerge_adapter(self): """ This method unmerges all merged adapter layers from the base model. """ for module in self.model.modules(): if isinstance(module, BaseTunerLayer): with onload_layer(module): module.unmerge() def _unloading_checks(self, adapter_names: Optional[list[str]]): adapters_to_consider = adapter_names or self.active_adapters is_modules_to_save_available = any( self.peft_config[adapter].modules_to_save for adapter in adapters_to_consider ) if is_modules_to_save_available and len(adapters_to_consider) > 1: raise ValueError("Cannot unload multiple adapters that specify `modules_to_save`.") class BaseTunerLayer(ABC): r""" A tuner layer mixin that provides the common methods and attributes for all tuners. Args: is_pluggable (`bool`, *optional*): Whether the adapter layer can be plugged to any pytorch module active_adapters (Union[List[`str`], `str`], *optional*): The name of the active adapter. """ active_adapter = None # All names of layers that may contain adapter (trainable) weights adapter_layer_names: tuple[str, ...] = () # All names of other parameters that may contain adapter-related parameters other_param_names: tuple[str, ...] = () # indicates whether all adapters should be disabled _disable_adapters: bool = False # the currently active adapter(s) _active_adapter: str | list[str] = "default" # List all merged adapters merged_adapters: list[str] = [] def get_base_layer(self) -> nn.Module: """ (Recursively) get the base_layer. This is necessary for the case that the tuner layer wraps another tuner layer. """ base_layer = self while hasattr(base_layer, "base_layer"): base_layer = base_layer.base_layer return base_layer @property def weight(self) -> torch.Tensor: # This is required for some transformers code, e.g. for T5, weight is accessed as: # self.wo.weight # where "wo" is the adapter layer. # https://github.com/huggingface/transformers/blob/78f6ed6c70b29c1560780e3869a7ad4c6b3d2710/src/transformers # /models/t5/modeling_t5.py#L292 base_layer = self.get_base_layer() if hasattr(base_layer, "qweight"): # QuantLinear weight = base_layer.qweight else: # Other layers weight = base_layer.weight return weight @property def bias(self) -> torch.Tensor: base_layer = self.get_base_layer() return base_layer.bias def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: raise NotImplementedError def unmerge(self) -> None: raise NotImplementedError @property def merged(self) -> bool: return bool(self.merged_adapters) @property def disable_adapters(self) -> bool: # use a property to ensure that disable_adapters is not set directly, instead use the enable_adapters method return self._disable_adapters @property def active_adapter(self) -> str | list[str]: # use a property to ensure that active_adapter is not set directly, instead use the set_adapter method return self._active_adapter def _get_available_adapters(self) -> set[str]: """Return all adapter names that can be found on this module.""" adapters = set() for layer_name in self.adapter_layer_names: module = getattr(self, layer_name) if not isinstance(module, (nn.ModuleDict, nn.ParameterDict)): continue adapters.update(set(module.keys())) return adapters @property def active_adapters(self): if isinstance(self.active_adapter, str): return [self.active_adapter] # is already a list of str return self.active_adapter def enable_adapters(self, enabled: bool) -> None: """Toggle the enabling and disabling of adapters Takes care of setting the requires_grad flag for the adapter weights. Args: enabled (bool): True to enable adapters, False to disable adapters """ if enabled: self.set_adapter(self.active_adapters) self._disable_adapters = False else: # disable grads on all adapter layers for layer_name in self.adapter_layer_names: layer = getattr(self, layer_name) layer.requires_grad_(False) self._disable_adapters = True def set_adapter(self, adapter_names: str | list[str]) -> None: """Set the active adapter(s). Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is not desired, use the following code. ```py >>> for name, param in model_peft.named_parameters(): ... if ...: # some check on name (ex. if 'lora' in name) ... param.requires_grad = False ``` Args: adapter_name (`str` or `List[str]`): Name of the adapter(s) to be activated. """ if isinstance(adapter_names, str): adapter_names = [adapter_names] # Deactivate grads on the inactive adapter and activate grads on the active adapter for layer_name in self.adapter_layer_names: module_dict = getattr(self, layer_name) for key, layer in module_dict.items(): if key in adapter_names: # Note: It is possible that not a single layer is called with requires_grad_(True) here. This may # happen if a completely different adapter layer is being activated. layer.requires_grad_(True) else: layer.requires_grad_(False) self._active_adapter = adapter_names def _all_available_adapter_names(self) -> list[str]: """Return a sorted list of all available adapter names""" adapter_names = set() for name in self.adapter_layer_names + self.other_param_names: # we check each possible attribute and if it's a dict or ModuleDict, we assume that the keys are the adapter # names attr = getattr(self, name) if hasattr(attr, "keys"): adapter_names.update(attr.keys()) return sorted(adapter_names) def delete_adapter(self, adapter_name: str) -> None: """ Delete an adapter from the layer This should be called on all adapter layers, or else we will get an inconsistent state. This method will also set a new active adapter if the deleted adapter was an active adapter. It is important that the new adapter is chosen in a deterministic way, so that the same adapter is chosen on all layers. Args: adapter_name (`str`): The name of the adapter to delete """ for attr in self.adapter_layer_names + self.other_param_names: if adapter_name in getattr(self, attr): del getattr(self, attr)[adapter_name] if adapter_name in self.active_adapters: # choose a new active adapter active_adapters = self.active_adapters[:] active_adapters.remove(adapter_name) if active_adapters: self.set_adapter(active_adapters) else: # no active adapters left, set a new default adapter # here we get the list of all adapters existing adapter names and choose the first one remaining_adapters = self._all_available_adapter_names() if not remaining_adapters: self.set_adapter([]) else: new_active_adapter = remaining_adapters[0] warnings.warn( f"Adapter {adapter_name} was active which is now deleted. Setting active adapter to " f"{new_active_adapter}." ) self.set_adapter(remaining_adapters[0]) def check_target_module_exists(config, key: str) -> bool | re.Match[str] | None: """A helper method to check if the passed module's key name matches any of the target modules in the adapter_config. Args: config (`LoraConfig` | `LycorisConfig`): A config to match target modules from key (`str`): A key to search any matches in config Returns: `bool` | `re.Match[str]` | `None`: True of match object if key matches any target modules from config, False or None if no match found """ if isinstance(config.target_modules, str): target_module_found = re.fullmatch(config.target_modules, key) elif key in config.target_modules: # this module is specified directly in target_modules target_module_found = True else: target_module_found = any(key.endswith(f".{target_key}") for target_key in config.target_modules) layer_indexes = getattr(config, "layers_to_transform", None) layers_pattern = getattr(config, "layers_pattern", None) is_using_layer_indexes = layer_indexes is not None and ( len(layer_indexes) != 0 if isinstance(layer_indexes, list) else True ) if is_using_layer_indexes and target_module_found: layer_index = None # TODO: It's still unclear how empty layers_pattern (None, [], or "") should behave # For now, empty layers_pattern means any layer pattern is ok if layers_pattern is None or len(layers_pattern) == 0: layer_index = re.match(r".*\.[^.]*\.(\d+)\.", key) else: layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern for pattern in layers_pattern: layer_index = re.match(rf".*\.{pattern}\.(\d+)\.", key) if layer_index is not None: break if layer_index is None: target_module_found = False else: layer_index = int(layer_index.group(1)) if isinstance(layer_indexes, int): target_module_found = layer_index == layer_indexes else: target_module_found = layer_index in layer_indexes return target_module_found def inspect_matched_modules(tuner: BaseTuner, adapter_name: str = "default") -> dict: """ A helper function to inspect the set of matched and unmatched modules for a PEFT model and the given adapter. """ config = tuner.peft_config[adapter_name] key_list = [key for key, _ in tuner.model.named_modules()] module_dict = {"matched": [], "unmatched": []} for key in key_list: if tuner._check_target_module_exists(config, key): module_dict["matched"].append(key) else: module_dict["unmatched"].append(key) return module_dict def _maybe_include_all_linear_layers(peft_config: PeftConfig, model: nn.Module) -> PeftConfig: """ Helper function to update `target_modules` to all linear/Conv1D layers if provided as 'all-linear'. Adapted from the QLoRA repository: https://github.com/artidoro/qlora/blob/main/qlora.py """ # if `target_modules` is a string, convert to lower case and check if it matches "all-linear" if not ( isinstance(peft_config.target_modules, str) and peft_config.target_modules.lower() == INCLUDE_LINEAR_LAYERS_SHORTHAND ): return peft_config if not isinstance(model, PreTrainedModel): raise ValueError( f"Only instances of PreTrainedModel support `target_modules={INCLUDE_LINEAR_LAYERS_SHORTHAND!r}`" ) linear_classes = (torch.nn.Linear, Conv1D) linear_module_names = set() for name, module in model.named_modules(): # match with all linear classes. if isinstance(module, linear_classes): names = name.rsplit(".", 1)[-1] # get the base name linear_module_names.add(names) # ignore the last classification head for text generation models output_emb = model.get_output_embeddings() if output_emb is not None: last_module_name = [name for name, module in model.named_modules() if module is output_emb][0] linear_module_names -= {last_module_name} peft_config.target_modules = linear_module_names return peft_config def check_adapters_to_merge(module: BaseTunerLayer, adapter_names: Optional[list[str]] = None) -> list[str]: """ Helper function to check which adapters should be merged. Only return those adapters that are not already merged. Give a warning if some or all of the adapters are already merged. """ if adapter_names is None: adapter_names = module.active_adapters if isinstance(adapter_names, str): raise ValueError(f"adapter_names should be a list of strings, got {adapter_names!r}.") if module.merged: merged_adapters = set(module.merged_adapters) adapter_names = [name for name in adapter_names if name not in merged_adapters] if adapter_names: warnings.warn( f"Already following adapters were merged {','.join(module.merged_adapters)}. " f"You are now additionally merging {','.join(adapter_names)}." ) else: warnings.warn("All adapters are already merged, nothing to do.") return adapter_names def clone_module(module: nn.Module, share_weights=False): """Clone a module in a pytorch model. Clones a module of a model, optionally sharing all the parameters between the original and the clone. Simplifies reusing a module when manipulating the architecture of a model. """ clone = copy.deepcopy(module) def _share_weights(src: nn.Module, dst: nn.Module): for name, param in src.named_parameters(recurse=False): dst.register_parameter(name, param) if share_weights: for name, submodule in module.named_modules(): _share_weights(submodule, clone.get_submodule(name)) return clone def replicate_layers(model: nn.Module, layer_map: list[tuple[int, int]]): """Replicate layers in a transfomer model with weight sharing. This function looks for a module list attribute at model[(.model)*].layers and replicates the layers in the module list according to the layer map. For example the map `[[0, 4], [2, 5]]` will take the set of layers `[0, 1, 2, 3, 4]` and replace them with a module list containing `[0, 1, 2, 3, 2, 3, 4]`. """ while hasattr(model, "model"): model = model.model # Some variants of the bert model nest the main model under the bert attribute. if hasattr(model, "bert"): model = model.bert model_type = None layers: nn.ModuleList = None if hasattr(model, "layers"): model_type = "llama" layers = model.layers elif hasattr(model, "encoder") and hasattr(model.encoder, "layer"): model_type = "bert" layers = model.encoder.layer elif hasattr(model, "h"): model_type = "falcon" layers = model.h if not model_type or not isinstance(layers, nn.ModuleList): raise ValueError( "Could not locate the layers attribute in the model. " "Expected Llama, Bert or Falcon compatible architectures." ) new_layers = [] for start, end in layer_map: for i in range(start, end): current_idx = len(new_layers) new_layers.append(clone_module(layers[i], share_weights=True)) # This is a hack needed to work around the layer_idx introduced in HF transformers. for submodule in new_layers[-1].modules(): if hasattr(submodule, "layer_idx"): submodule.layer_idx = current_idx layers = nn.ModuleList(new_layers) if model_type == "llama": model.layers = layers elif model_type == "bert": model.encoder.layer = layers elif model_type == "falcon": model.h = layers else: raise ValueError("Unexpected model type, need to handle post-processing of layers.") if hasattr(model.config, "num_hidden_layers"): # Common to Llama, Bert, Falcon. model.config.num_hidden_layers = len(new_layers)