File size: 6,911 Bytes
14af97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn.functional as nnf
from torch import nn
import random
from transformers import AutoModelForCausalLM
from MeshAnything.miche.encode import load_model
from MeshAnything.models.shape_opt import ShapeOPTConfig
from einops import repeat, reduce, rearrange, pack, unpack

class MeshAnythingV2(nn.Module):
    def __init__(self):
        super().__init__()
        self.point_encoder = load_model(ckpt_path=None)
        self.n_discrete_size = 128
        self.max_seq_ratio = 0.70
        self.face_per_token = 9
        self.cond_length = 257
        self.cond_dim = 768
        self.pad_id = -1
        self.n_max_triangles = 1600
        self.max_length = int(self.n_max_triangles * self.face_per_token * self.max_seq_ratio + 3 + self.cond_length) # add 1

        self.coor_continuous_range = (-0.5, 0.5)

        self.config = ShapeOPTConfig.from_pretrained(
            "facebook/opt-350m",
            n_positions=self.max_length,
            max_position_embeddings=self.max_length,
            vocab_size=self.n_discrete_size + 4,
            _attn_implementation="flash_attention_2"
        )

        self.bos_token_id = 0
        self.eos_token_id = 1
        self.pad_token_id = 2

        self.config.bos_token_id = self.bos_token_id
        self.config.eos_token_id = self.eos_token_id
        self.config.pad_token_id = self.pad_token_id
        self.config._attn_implementation="flash_attention_2"
        self.config.n_discrete_size = self.n_discrete_size
        self.config.face_per_token = self.face_per_token
        self.config.cond_length = self.cond_length

        if self.config.word_embed_proj_dim != self.config.hidden_size:
            self.config.word_embed_proj_dim = self.config.hidden_size
        self.transformer = AutoModelForCausalLM.from_config(
            config=self.config, use_flash_attention_2 = True
        )
        self.transformer.to_bettertransformer()

        self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
        self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)

        self.eval()

    def adjacent_detokenize(self, input_ids):
        input_ids = input_ids.reshape(input_ids.shape[0], -1) # B x L
        batch_size = input_ids.shape[0]
        continuous_coors = torch.zeros((batch_size, self.n_max_triangles * 3 * 10, 3), device=input_ids.device)
        continuous_coors[...] = float('nan')

        for i in range(batch_size):
            cur_ids = input_ids[i]
            coor_loop_check = 0
            vertice_count = 0
            continuous_coors[i, :3, :] = torch.tensor([[-0.1, 0.0, 0.1], [-0.1, 0.1, 0.2], [-0.3, 0.3, 0.2]],
                                                      device=input_ids.device)
            for id in cur_ids:
                if id == self.pad_id:
                    break
                elif id == self.n_discrete_size:
                    if coor_loop_check < 9:
                        break
                    if coor_loop_check % 3 !=0:
                        break
                    coor_loop_check = 0
                else:

                    if coor_loop_check % 3 == 0 and coor_loop_check >= 9:
                        continuous_coors[i, vertice_count] = continuous_coors[i, vertice_count-2]
                        continuous_coors[i, vertice_count+1] = continuous_coors[i, vertice_count-1]
                        vertice_count += 2
                    continuous_coors[i, vertice_count, coor_loop_check % 3] = undiscretize(id, self.coor_continuous_range[0], self.coor_continuous_range[1], self.n_discrete_size)
                    if coor_loop_check % 3 == 2:
                        vertice_count += 1
                    coor_loop_check += 1

        continuous_coors = rearrange(continuous_coors, 'b (nf nv) c -> b nf nv c', nv=3, c=3)

        return continuous_coors # b, nf, 3, 3


    def forward(self, data_dict: dict, is_eval: bool = False) -> dict:
        if not is_eval:
            return self.train_one_step(data_dict)
        else:
            return self.generate(data_dict)

    def process_point_feature(self, point_feature):
        encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
                                    device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
        encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
        shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
        encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))

        return encode_feature

    @torch.no_grad()
    def forward(self, pc_normal, sampling=False) -> dict:
        batch_size = pc_normal.shape[0]
        point_feature = self.point_encoder.encode_latents(pc_normal)
        processed_point_feature = self.process_point_feature(point_feature)
        generate_length = self.max_length - self.cond_length
        net_device = next(self.parameters()).device
        outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
        # batch x ntokens
        if not sampling:
            results = self.transformer.generate(
                inputs_embeds=processed_point_feature,
                max_new_tokens=generate_length,  # all faces plus two
                num_beams=1,
                bos_token_id=self.bos_token_id,
                eos_token_id=self.eos_token_id,
                pad_token_id=self.pad_token_id,
            )
        else:
            results = self.transformer.generate(
                inputs_embeds = processed_point_feature,
                max_new_tokens = generate_length, # all faces plus two
                do_sample=True,
                top_k=50,
                top_p=0.95,
                bos_token_id = self.bos_token_id,
                eos_token_id = self.eos_token_id,
                pad_token_id = self.pad_token_id,
            )
        assert results.shape[1] <= generate_length # B x ID  bos is not included since it's predicted
        outputs[:, :results.shape[1]] = results
        # batch x ntokens ====> batch x ntokens x D
        outputs = outputs[:, 1: -1]

        outputs[outputs == self.bos_token_id] = self.pad_id
        outputs[outputs == self.eos_token_id] = self.pad_id
        outputs[outputs == self.pad_token_id] = self.pad_id

        outputs[outputs != self.pad_id] -= 3
        gen_mesh = self.adjacent_detokenize(outputs)

        return gen_mesh

def undiscretize(

    t,

    low,#-0.5

    high,# 0.5

    num_discrete

):
    t = t.float() #[0, num_discrete-1]

    t /= num_discrete  # 0<=t<1
    t = t * (high - low) + low # -0.5 <= t < 0.5
    return t