File size: 24,078 Bytes
7262fda
 
 
 
 
 
 
 
 
 
14af97a
7262fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af97a
7262fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af97a
7262fda
 
14af97a
7262fda
 
14af97a
 
7262fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af97a
 
 
 
7262fda
 
14af97a
7262fda
 
 
 
 
 
 
 
 
14af97a
 
7262fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14af97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7262fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
from transformers import AutoModelForCausalLM, AutoConfig, OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTModel, OPTDecoder, OPTLearnedPositionalEmbedding, OPTDecoderLayer
from typing import List, Optional, Tuple, Union
from einops import repeat
from transformers.modeling_outputs import (
    CausalLMOutputWithPast,
)
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.utils import replace_return_docstrings
from transformers.modeling_outputs import BaseModelOutputWithPast

class ShapeOPTConfig(OPTConfig):
    model_type = "shape_opt"

class ShapeOPT(OPTForCausalLM):
    config_class = ShapeOPTConfig
    def __init__(self, config: ShapeOPTConfig):
        super(OPTForCausalLM, self).__init__(config)
        self.model = ShapeOPTModel(config)

        self.lm_head = nn.Linear(config.word_embed_proj_dim, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="OPTConfig")
    def forward(

        self,

        input_ids: torch.LongTensor = None,

        face_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        labels: Optional[torch.LongTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""

        Args:

            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you

                provide it.



                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

                [`PreTrainedTokenizer.__call__`] for details.



                [What are input IDs?](../glossary#input-ids)

            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



                - 1 for tokens that are **not masked**,

                - 0 for tokens that are **masked**.



                [What are attention masks?](../glossary#attention-mask)

            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):

                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:



                - 1 indicates the head is **not masked**,

                - 0 indicates the head is **masked**.



            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of

                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of

                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional

                tensors are only required when the model is used as a decoder in a Sequence to Sequence model.



                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the

                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.



                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those

                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of

                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.

                This is useful if you want more control over how to convert `input_ids` indices into associated vectors

                than the model's internal embedding lookup matrix.

            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):

                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored

                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            use_cache (`bool`, *optional*):

                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding

                (see `past_key_values`).

            output_attentions (`bool`, *optional*):

                Whether or not to return the attentions tensors of all attention layers. See `attentions` under

                returned tensors for more detail.

            output_hidden_states (`bool`, *optional*):

                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors

                for more detail.

            return_dict (`bool`, *optional*):

                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.



        Returns:



        Example:



        ```python

        >>> from transformers import AutoTokenizer, OPTForCausalLM



        >>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")

        >>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")



        >>> prompt = "Hey, are you conscious? Can you talk to me?"

        >>> inputs = tokenizer(prompt, return_tensors="pt")



        >>> # Generate

        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)

        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

        "Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."

        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.decoder(
            input_ids = input_ids,
            face_ids = face_ids,
            attention_mask=attention_mask,
            head_mask=head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = self.lm_head(outputs[0]).contiguous()

        loss = None
        if labels is not None:
            # move labels to correct device to enable model parallelism
            labels = labels.to(logits.device)
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

class ShapeOPTModel(OPTModel):
    config_class = ShapeOPTConfig
    def __init__(self, config: ShapeOPTConfig):
        super(OPTModel,self).__init__(config)
        self.decoder = ShapeOPTDecoder(config)
        # Initialize weights and apply final processing
        self.post_init()

class ShapeOPTDecoder(OPTDecoder):
    config_class = ShapeOPTConfig
    def __init__(self, config: ShapeOPTConfig):
        super(OPTDecoder,self).__init__(config)
        self.config = config
        self.dropout = config.dropout
        self.layerdrop = config.layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.vocab_size = config.vocab_size
        self.embed_tokens = nn.Embedding(config.vocab_size, config.word_embed_proj_dim, self.padding_idx)
        self.hidden_size = config.hidden_size
        self.word_embed_proj_dim = config.word_embed_proj_dim
        self.n_discrete_size = config.n_discrete_size

        self.embed_positions = OPTLearnedPositionalEmbedding(config.max_position_embeddings, config.hidden_size)
        self.token_embed_positions = OPTLoopEmbedding(10, config.word_embed_proj_dim, self.n_discrete_size) #padding_idx=self.padding_idx)

        self.face_per_token = config.face_per_token
        self.cond_length = config.cond_length
        self.cond_embed = nn.Embedding(2, config.word_embed_proj_dim)

        # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        if config.do_layer_norm_before and not config._remove_final_layer_norm:
            self.final_layer_norm = nn.LayerNorm(
                config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
            )
        else:
            self.final_layer_norm = None

        self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def forward(

        self,

        input_ids: torch.LongTensor = None,

        face_ids: torch.LongTensor = None,

        attention_mask: Optional[torch.Tensor] = None,

        head_mask: Optional[torch.Tensor] = None,

        past_key_values: Optional[List[torch.FloatTensor]] = None,

        inputs_embeds: Optional[torch.FloatTensor] = None,

        use_cache: Optional[bool] = None,

        output_attentions: Optional[bool] = None,

        output_hidden_states: Optional[bool] = None,

        return_dict: Optional[bool] = None,

    ) -> Union[Tuple, BaseModelOutputWithPast]:
        r"""

        Args:

            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):

                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you

                provide it.



                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and

                [`PreTrainedTokenizer.__call__`] for details.



                [What are input IDs?](../glossary#input-ids)

            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):

                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:



                - 1 for tokens that are **not masked**,

                - 0 for tokens that are **masked**.



                [What are attention masks?](../glossary#attention-mask)

            head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):

                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:



                - 1 indicates the head is **not masked**,

                - 0 indicates the head is **masked**.



            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):

                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of

                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of



                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the

                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.



                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those

                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of

                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.



            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):

                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.

                This is useful if you want more control over how to convert `input_ids` indices into associated vectors

                than the model's internal embedding lookup matrix.

            output_attentions (`bool`, *optional*):

                Whether or not to return the attentions tensors of all attention layers. See `attentions` under

                returned tensors for more detail.

            output_hidden_states (`bool`, *optional*):

                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors

                for more detail.

            return_dict (`bool`, *optional*):

                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.

        """
        # OPT Decoder
        # print("used my Trans")
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        # Transformer Decoder
        if input_ids is not None and inputs_embeds is not None: # when  train and first generate
            assert False
        elif input_ids is not None:
            assert not self.training
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            inputs_embeds = self.embed_tokens(input_ids)
            face_embeds = self.token_embed_positions(attention_mask[:, self.cond_length:], face_ids, input_ids,
                                                     self.face_per_token)
            inputs_embeds += face_embeds
            cond_embed_query = torch.ones((inputs_embeds.shape[0], inputs_embeds.shape[1]), device=inputs_embeds.device,
                                            dtype=inputs_embeds.dtype).long()
            inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)

        elif inputs_embeds is not None:
            # assert self.cond and not self.training
            assert not self.training
            self.token_embed_positions.init_state(inputs_embeds)
            total_length = inputs_embeds.shape[1] # B x length x embeding
            cond_embed_query = torch.zeros((inputs_embeds.shape[0], total_length), device=inputs_embeds.device,
                                            dtype=inputs_embeds.dtype).long()
            inputs_embeds = inputs_embeds + self.cond_embed(cond_embed_query)
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        batch_size, seq_length = inputs_embeds.shape[:2] # seq_length not used since mask_seq_length is not used
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values_length + seq_length # not used since attention mask is input

        # embed positions
        if self._use_flash_attention_2:
            # 2d mask is passed through the layers
            assert attention_mask is not None
            causal_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
            attention_mask = (
                torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
                if attention_mask is None
                else attention_mask
            )
        else:
            raise ValueError("Only flash_attention_2 is supported in MeshAnything")

        pos_embeds = self.embed_positions(attention_mask, past_key_values_length)

        hidden_states = inputs_embeds + pos_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != (len(self.layers)):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )

        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:
                    continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    None,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        if self.final_layer_norm is not None:
            hidden_states = self.final_layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

class OPTLoopEmbedding(nn.Embedding):
    """

    This module learns positional embeddings up to a fixed maximum size.

    """

    def __init__(self, num_embeddings: int, embedding_dim: int, n_discrete_size: int):
        super().__init__(num_embeddings, embedding_dim)
        self.state = None
        self.loop_state = None
        self.n_discrete_size = n_discrete_size + 3 # for padding

    def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        if face_ids is not None:
            return super().forward(face_ids)

        assert input_ids.shape[1] == 1, "Only one token is allowed for loop embedding"
        assert self.state is not None, "State is not initialized"
        # zero as beginning
        batch_size = input_ids.shape[0]
        face_ids = input_ids.clone().detach()

        for cur_batch_index in range(batch_size):
            cur_ids = input_ids[cur_batch_index]

            idx_in_extra = torch.isin(cur_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
            if idx_in_extra:
                self.state[cur_batch_index] = 9  # init
                self.loop_state[cur_batch_index] = 0
            else:
                if cur_ids == self.n_discrete_size:
                    face_ids[cur_batch_index] = 3
                    self.state[cur_batch_index] = 9 # init
                    self.loop_state[cur_batch_index] = 0
                else:
                    if self.state[cur_batch_index] == 0:
                        face_ids[cur_batch_index] = 7 + self.loop_state[cur_batch_index] % 3
                    else:
                        self.state[cur_batch_index] -= 1
                        face_ids[cur_batch_index] = 4 + self.loop_state[cur_batch_index] % 3
                    self.loop_state[cur_batch_index] += 1

        return super().forward(face_ids)

    def init_state(self, template_tensor):
        batch_size = template_tensor.shape[0]
        self.state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)
        self.state[...] = 9
        self.loop_state = torch.zeros((batch_size, 1), dtype=torch.long, device=template_tensor.device)

class OPTFacePositionalEmbedding(nn.Embedding):
    """

    This module learns positional embeddings up to a fixed maximum size.

    """

    def __init__(self, num_embeddings: int, embedding_dim: int):
        super().__init__(num_embeddings, embedding_dim)

    def forward(self, attention_mask=None, face_ids = None, input_ids = None, face_per_token = None):
        """`input_ids_shape` is expected to be [bsz x seqlen]."""
        if face_ids is not None:
            return super().forward(face_ids)

        assert input_ids.shape[1] == 1
        idx_in_extra = torch.isin(input_ids, torch.LongTensor([0, 1, 2]).to(input_ids.device))
        cur_ids = input_ids.clone().detach()

        cur_index = (attention_mask.sum(dim=1, keepdim=True) - 2) % face_per_token + 3
        cur_ids[~idx_in_extra]=cur_index[~idx_in_extra]

        return super().forward(cur_ids)


AutoConfig.register("shape_opt", ShapeOPTConfig)
AutoModelForCausalLM.register(ShapeOPTConfig, ShapeOPT)