Yiwen-ntu's picture
Upload 47 files
7262fda verified
raw
history blame contribute delete
No virus
9.75 kB
import torch
from torch import nn, Tensor
from transformers import AutoModelForCausalLM, AutoConfig, AutoModel
from MeshAnything.miche.encode import load_model
from MeshAnything.models.shape_opt import ShapeOPTConfig
from einops.layers.torch import Rearrange
from einops import rearrange, repeat, reduce, pack, unpack
import torch.nn.functional as F
class NoiseResistantDecoder(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.pad_id = -1
self.num_quantizers = 3
self.discrete_num = 128
self.codebook_size = args.codebook_size
self.codebook_dim = args.codebook_dim
config = AutoConfig.from_pretrained("bert-base-uncased")
config.num_hidden_layers = 6
self.decoder= AutoModel.from_config(config=config).to_bettertransformer().encoder
self.n_embd = self.decoder.config.hidden_size
self.pos_embedding = nn.Embedding(18000, self.n_embd)
self.layernorm = nn.LayerNorm(self.n_embd)
self.point_layernorm = nn.LayerNorm(self.n_embd)
self.cond_length = 257
self.cond_dim = 768
self.point_pe = nn.Embedding(self.cond_length, self.n_embd)
self.cond_proj = nn.Linear(self.cond_dim, self.n_embd)
self.cond_head_proj = nn.Linear(self.cond_dim, self.n_embd)
self.project_down_codebook = nn.Linear(self.codebook_dim * 3, self.n_embd)
self.to_coor_logits = nn.Sequential(
nn.Linear(self.n_embd, self.discrete_num * 9),
Rearrange('... (v c) -> ... v c', v = 9)
)
def process_point_feature(self, encode_feature):
point_feature = torch.zeros(encode_feature.shape[0], self.cond_length, self.n_embd, device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
point_feature[:, 0] = self.cond_head_proj(encode_feature[:, 0])
point_feature[:, 1:] = self.cond_proj(encode_feature[:, 1:])
point_feature = self.point_layernorm(point_feature + self.point_pe.weight[None, :point_feature.shape[1]])
return point_feature
def forward(self, input_ids, input_embeds, point_feature = None):
input_ids = input_ids.reshape(input_ids.shape[0], -1)
point_feature = self.process_point_feature(point_feature)
face_embeds = rearrange(input_embeds, 'b (nf nv) d -> b nf (nv d)', nv = 3)
face_embeds = self.project_down_codebook(face_embeds)
face_mask = reduce(input_ids != self.pad_id, 'b (nf nv q) -> b nf', 'all', nv = 3, q = self.num_quantizers)
face_embeds[~face_mask] = 0
face_embeds = self.layernorm(face_embeds + self.pos_embedding.weight[None, :face_embeds.shape[1]])
outputs = self.decoder(
hidden_states=torch.concatenate([point_feature, face_embeds], dim=1),
)
decoded = outputs.last_hidden_state[:, self.cond_length:] # batch x nfaces x dim
decoded = decoded.masked_fill(~face_mask.unsqueeze(-1), 0.)
# batch x nfaces x 9 -> batch x nfaces x 3 x 3
pred_face_logits = self.to_coor_logits(decoded) # batch x nfaces x 9 x ndiscrete
pred_face_coords = rearrange(pred_face_logits.argmax(dim = -1), '... (v c) -> ... v c', v = 3)
continuous_coors = undiscretize(
pred_face_coords,
num_discrete = self.discrete_num,
low = -0.5,
high = 0.5
)
continuous_coors = continuous_coors.masked_fill(~rearrange(face_mask, 'b nf -> b nf 1 1'), float('nan'))
return continuous_coors
class MeshAnything(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.point_encoder = load_model(ckpt_path=None)
self.tokenizer = NoiseResistantDecoder(args)
self.num_quantizers = 3
self.face_per_token = self.num_quantizers * 3
self.cond_length = 257
self.cond_dim = 768
self.max_length = args.n_max_triangles * self.face_per_token + 2 + self.cond_length
self.config = ShapeOPTConfig.from_pretrained(
args.llm,
n_positions=18259,
max_position_embeddings=18259,
vocab_size=self.tokenizer.codebook_size + 3,
_attn_implementation="flash_attention_2"
)
self.bos_token_id = 0
self.eos_token_id = 1
self.pad_token_id = 2
self.config.bos_token_id = self.bos_token_id
self.config.eos_token_id = self.eos_token_id
self.config.pad_token_id = self.pad_token_id
self.config.quantize_codebook_dim = self.tokenizer.codebook_dim
self.config.face_per_token = self.face_per_token
self.config._attn_implementation="flash_attention_2"
self.config.cond_length = self.cond_length
if self.config.word_embed_proj_dim != self.config.hidden_size:
self.config.word_embed_proj_dim = self.config.hidden_size
self.transformer = AutoModelForCausalLM.from_config(
config=self.config, use_flash_attention_2 = True
)
self.transformer.to_bettertransformer()
self.transformer.model.decoder.quantize_codebooks = nn.Parameter(torch.zeros(1, self.tokenizer.codebook_size, self.tokenizer.codebook_dim))
self.cond_head_proj = nn.Linear(self.cond_dim, self.config.word_embed_proj_dim)
self.cond_proj = nn.Linear(self.cond_dim * 2, self.config.word_embed_proj_dim)
self.eval()
def process_point_feature(self, point_feature):
encode_feature = torch.zeros(point_feature.shape[0], self.cond_length, self.config.word_embed_proj_dim,
device=self.cond_head_proj.weight.device, dtype=self.cond_head_proj.weight.dtype)
encode_feature[:, 0] = self.cond_head_proj(point_feature[:, 0])
shape_latents = self.point_encoder.to_shape_latents(point_feature[:, 1:])
encode_feature[:, 1:] = self.cond_proj(torch.cat([point_feature[:, 1:], shape_latents], dim=-1))
return encode_feature
@torch.no_grad()
def forward(self, pc_normal, sampling=False) -> dict:
batch_size = pc_normal.shape[0]
point_feature = self.point_encoder.encode_latents(pc_normal)
processed_point_feature = self.process_point_feature(point_feature)
generate_length = self.max_length - self.cond_length
net_device = next(self.parameters()).device
outputs = torch.ones(batch_size, generate_length).long().to(net_device) * self.eos_token_id
if not sampling:
results = self.transformer.generate(
inputs_embeds=processed_point_feature,
max_new_tokens=generate_length, # all faces plus two
num_beams=1,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
)
else:
results = self.transformer.generate(
inputs_embeds = processed_point_feature,
max_new_tokens=generate_length, # all faces plus two
do_sample=True,
top_k=50,
top_p=0.95,
bos_token_id = self.bos_token_id,
eos_token_id = self.eos_token_id,
pad_token_id = self.pad_token_id,
)
assert results.shape[1] <= generate_length # B x ID bos is not included since it's predicted
outputs[:, :results.shape[1]] = results
# batch x ntokens ====> batch x ntokens x D
outputs = outputs[:, 1: -1]
outputs[outputs == self.bos_token_id] = self.tokenizer.pad_id
outputs[outputs == self.eos_token_id] = self.tokenizer.pad_id
outputs[outputs == self.pad_token_id] = self.tokenizer.pad_id
outputs[outputs != self.tokenizer.pad_id] -= 3
code_embed = self.get_codes(outputs)
decoder_output = self.tokenizer(outputs, code_embed, point_feature=point_feature)
return decoder_output
def get_codes(self, indices):
indices = indices.reshape(indices.shape[0], -1)
indices = rearrange(indices, 'b (n q) -> b n q', q=self.num_quantizers)
batch, quantize_dim = indices.shape[0], indices.shape[-1]
# may also receive indices in the shape of 'b h w q' (accept_image_fmap)
indices, ps = pack([indices], 'b * q')
# because of quantize dropout, one can pass in indices that are coarse
# and the network should be able to reconstruct
if quantize_dim < self.num_quantizers:
indices = F.pad(indices, (0, self.num_quantizers - quantize_dim), value = -1)
# take care of quantizer dropout
mask = indices == -1.
indices = indices.masked_fill(mask, 0) # have it fetch a dummy code to be masked out later
# dummy implementation for shared codebook
all_codes = self.transformer.model.decoder.quantize_codebooks[0][indices]
all_codes = all_codes.permute(2, 0, 1, 3)
# mask out any codes that were dropout-ed
all_codes = all_codes.masked_fill(rearrange(mask, 'b n q -> q b n 1'), 0.)
# if (accept_image_fmap = True) then return shape (quantize, batch, height, width, dimension)
codes, = unpack(all_codes, ps, 'q b * d')
codes_summed = reduce(codes, 'q ... -> ...', 'sum')
return codes_summed
def undiscretize(
t,
low,
high,
num_discrete
) -> Tensor:
t = t.float()
t /= num_discrete
return t * (high - low) + low