# Adapted from Open-Sora-Plan # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan # -------------------------------------------------------- import functools import hashlib import os from collections import namedtuple import requests import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from torch import nn from torchvision import models from tqdm import tqdm from videosys.models.open_sora_plan.modules.normalize import ActNorm URL_MAP = {"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"} CKPT_MAP = {"vgg_lpips": "vgg.pth"} MD5_MAP = {"vgg_lpips": "d507d7349b931f0638a25a48a722f98a"} def download(url, local_path, chunk_size=1024): os.makedirs(os.path.split(local_path)[0], exist_ok=True) with requests.get(url, stream=True) as r: total_size = int(r.headers.get("content-length", 0)) with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: with open(local_path, "wb") as f: for data in r.iter_content(chunk_size=chunk_size): if data: f.write(data) pbar.update(chunk_size) def md5_hash(path): with open(path, "rb") as f: content = f.read() return hashlib.md5(content).hexdigest() def get_ckpt_path(name, root, check=False): assert name in URL_MAP path = os.path.join(root, CKPT_MAP[name]) if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) download(URL_MAP[name], path) md5 = md5_hash(path) assert md5 == MD5_MAP[name], md5 return path class LPIPS(nn.Module): # Learned perceptual metric def __init__(self, use_dropout=True): super().__init__() self.scaling_layer = ScalingLayer() self.chns = [64, 128, 256, 512, 512] # vg16 features self.net = vgg16(pretrained=True, requires_grad=False) self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) self.load_from_pretrained() for param in self.parameters(): param.requires_grad = False def load_from_pretrained(self, name="vgg_lpips"): ckpt = get_ckpt_path(name, "taming/modules/autoencoder/lpips") self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) print("loaded pretrained LPIPS loss from {}".format(ckpt)) @classmethod def from_pretrained(cls, name="vgg_lpips"): if name != "vgg_lpips": raise NotImplementedError model = cls() ckpt = get_ckpt_path(name) model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) return model def forward(self, input, target): in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) outs0, outs1 = self.net(in0_input), self.net(in1_input) feats0, feats1, diffs = {}, {}, {} lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] for kk in range(len(self.chns)): feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] val = res[0] for l in range(1, len(self.chns)): val += res[l] return val class ScalingLayer(nn.Module): def __init__(self): super(ScalingLayer, self).__init__() self.register_buffer("shift", torch.Tensor([-0.030, -0.088, -0.188])[None, :, None, None]) self.register_buffer("scale", torch.Tensor([0.458, 0.448, 0.450])[None, :, None, None]) def forward(self, inp): return (inp - self.shift) / self.scale class NetLinLayer(nn.Module): """A single linear layer which does a 1x1 conv""" def __init__(self, chn_in, chn_out=1, use_dropout=False): super(NetLinLayer, self).__init__() layers = ( [ nn.Dropout(), ] if (use_dropout) else [] ) layers += [ nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] self.model = nn.Sequential(*layers) class vgg16(torch.nn.Module): def __init__(self, requires_grad=False, pretrained=True): super(vgg16, self).__init__() vgg_pretrained_features = models.vgg16(pretrained=pretrained).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.N_slices = 5 for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(23, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h = self.slice1(X) h_relu1_2 = h h = self.slice2(h) h_relu2_2 = h h = self.slice3(h) h_relu3_3 = h h = self.slice4(h) h_relu4_3 = h h = self.slice5(h) h_relu5_3 = h vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]) out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) return out def normalize_tensor(x, eps=1e-10): norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True)) return x / (norm_factor + eps) def spatial_average(x, keepdim=True): return x.mean([2, 3], keepdim=keepdim) def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) def weights_init_conv(m): if hasattr(m, "conv"): m = m.conv classname = m.__class__.__name__ if classname.find("Conv") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), ] sequence += [ nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input) class NLayerDiscriminator3D(nn.Module): """Defines a 3D PatchGAN discriminator as in Pix2Pix but for 3D inputs.""" def __init__(self, input_nc=1, ndf=64, n_layers=3, use_actnorm=False): """ Construct a 3D PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input volumes ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator use_actnorm (bool) -- flag to use actnorm instead of batchnorm """ super(NLayerDiscriminator3D, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm3d else: raise NotImplementedError("Not implemented.") if type(norm_layer) == functools.partial: use_bias = norm_layer.func != nn.BatchNorm3d else: use_bias = norm_layer != nn.BatchNorm3d kw = 3 padw = 1 sequence = [nn.Conv3d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv3d( ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=(2 if n == 1 else 1, 2, 2), padding=padw, bias=use_bias, ), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv3d( ndf * nf_mult_prev, ndf * nf_mult, kernel_size=(kw, kw, kw), stride=1, padding=padw, bias=use_bias ), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), ] sequence += [ nn.Conv3d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw) ] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input) def hinge_d_loss(logits_real, logits_fake): loss_real = torch.mean(F.relu(1.0 - logits_real)) loss_fake = torch.mean(F.relu(1.0 + logits_fake)) d_loss = 0.5 * (loss_real + loss_fake) return d_loss def vanilla_d_loss(logits_real, logits_fake): d_loss = 0.5 * ( torch.mean(torch.nn.functional.softplus(-logits_real)) + torch.mean(torch.nn.functional.softplus(logits_fake)) ) return d_loss def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights): assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0] loss_real = torch.mean(F.relu(1.0 - logits_real), dim=[1, 2, 3]) loss_fake = torch.mean(F.relu(1.0 + logits_fake), dim=[1, 2, 3]) loss_real = (weights * loss_real).sum() / weights.sum() loss_fake = (weights * loss_fake).sum() / weights.sum() d_loss = 0.5 * (loss_real + loss_fake) return d_loss def adopt_weight(weight, global_step, threshold=0, value=0.0): if global_step < threshold: weight = value return weight def measure_perplexity(predicted_indices, n_embed): # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed) avg_probs = encodings.mean(0) perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() cluster_use = torch.sum(avg_probs > 0) return perplexity, cluster_use def l1(x, y): return torch.abs(x - y) def l2(x, y): return torch.pow((x - y), 2) class LPIPSWithDiscriminator(nn.Module): def __init__( self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, perceptual_weight=1.0, # --- Discriminator Loss --- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge", ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator( input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm ).apply(weights_init) self.discriminator_iter_start = disc_start self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward( self, inputs, reconstructions, posteriors, optimizer_idx, global_step, split="train", weights=None, last_layer=None, cond=None, ): inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous() rec_loss = torch.abs(inputs - reconstructions) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs, reconstructions) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] # GAN Part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions.contiguous()) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) g_loss = -torch.mean(logits_fake) if self.disc_factor > 0.0: try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError: assert not self.training d_weight = torch.tensor(0.0) else: d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = { "{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean(), } return d_loss, log class LPIPSWithDiscriminator3D(nn.Module): def __init__( self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, perceptual_weight=1.0, # --- Discriminator Loss --- disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, use_actnorm=False, disc_conditional=False, disc_loss="hinge", ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) self.discriminator = NLayerDiscriminator3D( input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm ).apply(weights_init) self.discriminator_iter_start = disc_start self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss self.disc_factor = disc_factor self.discriminator_weight = disc_weight self.disc_conditional = disc_conditional def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): if last_layer is not None: nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] else: nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() d_weight = d_weight * self.discriminator_weight return d_weight def forward( self, inputs, reconstructions, posteriors, optimizer_idx, global_step, split="train", weights=None, last_layer=None, cond=None, ): t = inputs.shape[2] inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous() rec_loss = torch.abs(inputs - reconstructions) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs, reconstructions) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] inputs = rearrange(inputs, "(b t) c h w -> b c t h w", t=t).contiguous() reconstructions = rearrange(reconstructions, "(b t) c h w -> b c t h w", t=t).contiguous() # GAN Part if optimizer_idx == 0: # generator update if cond is None: assert not self.disc_conditional logits_fake = self.discriminator(reconstructions) else: assert self.disc_conditional logits_fake = self.discriminator(torch.cat((reconstructions, cond), dim=1)) g_loss = -torch.mean(logits_fake) if self.disc_factor > 0.0: try: d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) except RuntimeError as e: assert not self.training, print(e) d_weight = torch.tensor(0.0) else: d_weight = torch.tensor(0.0) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), "{}/d_weight".format(split): d_weight.detach(), "{}/disc_factor".format(split): torch.tensor(disc_factor), "{}/g_loss".format(split): g_loss.detach().mean(), } return loss, log if optimizer_idx == 1: if cond is None: logits_real = self.discriminator(inputs.contiguous().detach()) logits_fake = self.discriminator(reconstructions.contiguous().detach()) else: logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) d_loss = disc_factor * self.disc_loss(logits_real, logits_fake) log = { "{}/disc_loss".format(split): d_loss.clone().detach().mean(), "{}/logits_real".format(split): logits_real.detach().mean(), "{}/logits_fake".format(split): logits_fake.detach().mean(), } return d_loss, log class SimpleLPIPS(nn.Module): def __init__( self, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0, perceptual_weight=1.0, disc_loss="hinge", ): super().__init__() assert disc_loss in ["hinge", "vanilla"] self.kl_weight = kl_weight self.pixel_weight = pixelloss_weight self.perceptual_loss = LPIPS().eval() self.perceptual_weight = perceptual_weight self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init) def forward( self, inputs, reconstructions, posteriors, split="train", weights=None, ): inputs = rearrange(inputs, "b c t h w -> (b t) c h w").contiguous() reconstructions = rearrange(reconstructions, "b c t h w -> (b t) c h w").contiguous() rec_loss = torch.abs(inputs - reconstructions) if self.perceptual_weight > 0: p_loss = self.perceptual_loss(inputs, reconstructions) rec_loss = rec_loss + self.perceptual_weight * p_loss nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar weighted_nll_loss = nll_loss if weights is not None: weighted_nll_loss = weights * nll_loss weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0] nll_loss = torch.sum(nll_loss) / nll_loss.shape[0] kl_loss = posteriors.kl() kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] loss = weighted_nll_loss + self.kl_weight * kl_loss log = { "{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(), "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(), "{}/rec_loss".format(split): rec_loss.detach().mean(), } if self.perceptual_weight > 0: log.update({"{}/p_loss".format(split): p_loss.detach().mean()}) return loss, log