File size: 17,699 Bytes
8b4c6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import torch
import numpy as np
import cv2
from torch.utils.data import Dataset
from torchvision import transforms
import random
import imgaug.augmenters as iaa
import numbers
import math


def random_interp():
    return np.random.choice([cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])

class RandomAffine(object):
    """
    Random affine translation
    """
    def __init__(self, degrees, translate=None, scale=None, shear=None, flip=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
                assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
                    "shear should be a list or tuple and it must be of length 2."
                self.shear = shear
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor
        self.flip = flip

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, flip, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = (random.uniform(scale_ranges[0], scale_ranges[1]),
                     random.uniform(scale_ranges[0], scale_ranges[1]))
        else:
            scale = (1.0, 1.0)

        if shears is not None:
            shear = random.uniform(shears[0], shears[1])
        else:
            shear = 0.0

        if flip is not None:
            flip = (np.random.rand(2) < flip).astype(np.int32) * 2 - 1

        return angle, translations, scale, shear, flip

    def __call__(self, sample):
        fg, alpha = sample['fg'], sample['alpha']
        rows, cols, ch = fg.shape
        if np.maximum(rows, cols) < 1024:
            params = self.get_params((0, 0), self.translate, self.scale, self.shear, self.flip, fg.size)
        else:
            params = self.get_params(self.degrees, self.translate, self.scale, self.shear, self.flip, fg.size)

        center = (cols * 0.5 + 0.5, rows * 0.5 + 0.5)
        M = self._get_inverse_affine_matrix(center, *params)
        M = np.array(M).reshape((2, 3))

        fg = cv2.warpAffine(fg, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)
        alpha = cv2.warpAffine(alpha, M, (cols, rows), flags=random_interp() + cv2.WARP_INVERSE_MAP)

        sample['fg'], sample['alpha'] = fg, alpha

        return sample

    @ staticmethod
    def _get_inverse_affine_matrix(center, angle, translate, scale, shear, flip):
        # Helper method to compute inverse matrix for affine transformation

        # As it is explained in PIL.Image.rotate
        # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
        # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
        # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
        # RSS is rotation with scale and shear matrix
        # It is different from the original function in torchvision
        # The order are changed to flip -> scale -> rotation -> shear
        # x and y have different scale factors
        # RSS(shear, a, scale, f) = [ cos(a + shear)*scale_x*f -sin(a + shear)*scale_y     0]
        # [ sin(a)*scale_x*f          cos(a)*scale_y             0]
        # [     0                       0                      1]
        # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

        angle = math.radians(angle)
        shear = math.radians(shear)
        scale_x = 1.0 / scale[0] * flip[0]
        scale_y = 1.0 / scale[1] * flip[1]

        # Inverted rotation matrix with scale and shear
        d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
        matrix = [
            math.cos(angle) * scale_x, math.sin(angle + shear) * scale_x, 0,
            -math.sin(angle) * scale_y, math.cos(angle + shear) * scale_y, 0
        ]
        matrix = [m / d for m in matrix]

        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
        matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])

        # Apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += center[0]
        matrix[5] += center[1]

        return matrix
    

class GenTrimap(object):
    def __init__(self):
        self.erosion_kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,100)]

    def __call__(self, sample):
        alpha = sample['alpha']
        h, w = alpha.shape

        max_kernel_size = max(30, int((min(h,w) / 2048) * 30))

        ### generate trimap
        fg_mask = (alpha + 1e-5).astype(np.int32).astype(np.uint8)
        bg_mask = (1 - alpha + 1e-5).astype(np.int32).astype(np.uint8)
        fg_mask = cv2.erode(fg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])
        bg_mask = cv2.erode(bg_mask, self.erosion_kernels[np.random.randint(1, max_kernel_size)])

        trimap = np.ones_like(alpha) * 128
        trimap[fg_mask == 1] = 255
        trimap[bg_mask == 1] = 0

        trimap = cv2.resize(trimap, (w,h), interpolation=cv2.INTER_NEAREST)
        sample['trimap'] = trimap

        return sample
    

class RandomCrop(object):
    """
    Crop randomly the image in a sample, retain the center 1/4 images, and resize to 'output_size'

    :param output_size (tuple or int): Desired output size. If int, square crop
            is made.
    """

    def __init__(self, output_size=(1024, 1024)):
        assert isinstance(output_size, (int, tuple))
        if isinstance(output_size, int):
            self.output_size = (output_size, output_size)
        else:
            assert len(output_size) == 2
            self.output_size = output_size
        self.margin = output_size[0] // 2

    def __call__(self, sample):
        fg, alpha, trimap, name = sample['fg'],  sample['alpha'], sample['trimap'], sample['image_name']
        bg = sample['bg']
        h, w = trimap.shape
        bg = cv2.resize(bg, (w, h), interpolation=random_interp())
        if w < self.output_size[0]+1 or h < self.output_size[1]+1:
            ratio = 1.1*self.output_size[0]/h if h < w else 1.1*self.output_size[1]/w
            # self.logger.warning("Size of {} is {}.".format(name, (h, w)))
            while h < self.output_size[0]+1 or w < self.output_size[1]+1:
                fg = cv2.resize(fg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
                alpha = cv2.resize(alpha, (int(w*ratio), int(h*ratio)),
                                   interpolation=random_interp())
                trimap = cv2.resize(trimap, (int(w*ratio), int(h*ratio)), interpolation=cv2.INTER_NEAREST)
                bg = cv2.resize(bg, (int(w*ratio), int(h*ratio)), interpolation=random_interp())
                h, w = trimap.shape
        small_trimap = cv2.resize(trimap, (w//4, h//4), interpolation=cv2.INTER_NEAREST)
        unknown_list = list(zip(*np.where(small_trimap[self.margin//4:(h-self.margin)//4,
                                                       self.margin//4:(w-self.margin)//4] == 128)))
        unknown_num = len(unknown_list)
        if len(unknown_list) < 10:
            left_top = (np.random.randint(0, h-self.output_size[0]+1), np.random.randint(0, w-self.output_size[1]+1))
        else:
            idx = np.random.randint(unknown_num)
            left_top = (unknown_list[idx][0]*4, unknown_list[idx][1]*4)

        fg_crop = fg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
        alpha_crop = alpha[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]
        bg_crop = bg[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1],:]
        trimap_crop = trimap[left_top[0]:left_top[0]+self.output_size[0], left_top[1]:left_top[1]+self.output_size[1]]

        if len(np.where(trimap==128)[0]) == 0:
            fg_crop = cv2.resize(fg, self.output_size[::-1], interpolation=random_interp())
            alpha_crop = cv2.resize(alpha, self.output_size[::-1], interpolation=random_interp())
            trimap_crop = cv2.resize(trimap, self.output_size[::-1], interpolation=cv2.INTER_NEAREST)
            bg_crop = cv2.resize(bg, self.output_size[::-1], interpolation=random_interp())
        
        sample.update({'fg': fg_crop, 'alpha': alpha_crop, 'trimap': trimap_crop, 'bg': bg_crop})
        return sample
    

class Composite_Seg(object):
    def __call__(self, sample):
        fg, bg, alpha = sample['fg'], sample['bg'], sample['alpha']
        fg[fg < 0 ] = 0
        fg[fg > 255] = 255
        image = fg
        sample['image'] = image
        return sample
    

class ToTensor(object):
    """
    Convert ndarrays in sample to Tensors with normalization.
    """
    def __init__(self, phase="test", real_world_aug = False):
        # self.mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
        # self.std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
        self.mean = torch.tensor([0.0, 0.0, 0.0]).view(3,1,1)
        self.std = torch.tensor([1.0, 1.0, 1.0]).view(3,1,1)
        self.phase = phase
        if real_world_aug:
            self.RWA = iaa.SomeOf((1, None), [
                iaa.LinearContrast((0.6, 1.4)),
                iaa.JpegCompression(compression=(0, 60)),
                iaa.GaussianBlur(sigma=(0.0, 3.0)),
                iaa.AdditiveGaussianNoise(scale=(0, 0.1*255))
            ], random_order=True)
        else:
            self.RWA = None
    
    def get_box_from_alpha(self, alpha_final):
        bi_mask = np.zeros_like(alpha_final)
        bi_mask[alpha_final>0.5] = 1
        #bi_mask[alpha_final<=0.5] = 0
        fg_set = np.where(bi_mask != 0)
        if len(fg_set[1]) == 0 or len(fg_set[0]) == 0:
            x_min = random.randint(1, 511)
            x_max = random.randint(1, 511) + x_min
            y_min = random.randint(1, 511)
            y_max = random.randint(1, 511) + y_min
        else:
            x_min = np.min(fg_set[1])
            x_max = np.max(fg_set[1])
            y_min = np.min(fg_set[0])
            y_max = np.max(fg_set[0])
        bbox = np.array([x_min, y_min, x_max, y_max])
        #cv2.rectangle(image, (x_min, y_min), (x_max, y_max), (0,255,0), 2)
        #cv2.imwrite('../outputs/test.jpg', image)
        #cv2.imwrite('../outputs/test_gt.jpg', alpha_single)
        return bbox

    def __call__(self, sample):
        # convert GBR images to RGB
        image, alpha, trimap = sample['image'][:,:,::-1], sample['alpha'], sample['trimap']
        
        alpha[alpha < 0 ] = 0
        alpha[alpha > 1] = 1
        
        bbox = self.get_box_from_alpha(alpha)

        if self.phase == 'train' and self.RWA is not None and np.random.rand() < 0.5:
            image[image > 255] = 255
            image[image < 0] = 0
            image = np.round(image).astype(np.uint8)
            image = np.expand_dims(image, axis=0)
            image = self.RWA(images=image)
            image = image[0, ...]

        # swap color axis because
        # numpy image: H x W x C
        # torch image: C X H X W
        image = image.transpose((2, 0, 1)).astype(np.float32)
        alpha = np.expand_dims(alpha.astype(np.float32), axis=0)
        trimap[trimap < 85] = 0
        trimap[trimap >= 170] = 2
        trimap[trimap >= 85] = 1
        #image = cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255,0,0), 3)
        #cv2.imwrite(os.path.join('outputs', 'img_bbox.png'), image.astype('uint8'))
        # normalize image
        image /= 255.

        if self.phase == "train":
            # convert GBR images to RGB
            fg = sample['fg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
            sample['fg'] = torch.from_numpy(fg).sub_(self.mean).div_(self.std)
            bg = sample['bg'][:,:,::-1].transpose((2, 0, 1)).astype(np.float32) / 255.
            sample['bg'] = torch.from_numpy(bg).sub_(self.mean).div_(self.std)
            del sample['image_name']
        
        sample['boxes'] = torch.from_numpy(bbox).to(torch.float)[None,...]

        sample['image'], sample['alpha'], sample['trimap'] = \
            torch.from_numpy(image), torch.from_numpy(alpha), torch.from_numpy(trimap).to(torch.long)
        sample['image'] = sample['image'].sub_(self.mean).div_(self.std)
        sample['trimap'] = sample['trimap'][None,...].float()

        return sample


class RefMatteData(Dataset):
    def __init__(
        self, 
        data_root_path,
        num_ratio = 0.34,
    ):
        self.data_root_path = data_root_path
        self.num_ratio = num_ratio

        self.rim_img = [os.path.join(data_root_path, name) for name in sorted(os.listdir(data_root_path))]
        self.rim_pha = [os.path.join(data_root_path.replace('img', 'mask'), name) for name in sorted(os.listdir(data_root_path.replace('img', 'mask')))]
        self.rim_num = len(self.rim_pha)

        self.transform_spd = transforms.Compose([
            RandomAffine(degrees=30, scale=[0.8, 1.5], shear=10, flip=0.5),
            GenTrimap(),
            RandomCrop((1024, 1024)),
            Composite_Seg(),
            ToTensor(phase="train", real_world_aug=False)
        ])

    def __getitem__(self, idx):
        if self.num_ratio is not None:
            if self.num_ratio < 1.0 or idx >= self.rim_num:
                idx = np.random.randint(0, self.rim_num)
        alpha = cv2.imread(self.rim_pha[idx % self.rim_num], 0).astype(np.float32)/255
        alpha_img_name = self.rim_pha[idx % self.rim_num].split('/')[-1]
        fg_img_name = alpha_img_name[:-6] + '.jpg'

        fg = cv2.imread(os.path.join(self.data_root_path, fg_img_name))

        if np.random.rand() < 0.25:
            fg = cv2.resize(fg, (1280, 1280), interpolation=random_interp())
            alpha = cv2.resize(alpha, (1280, 1280), interpolation=random_interp())

        image_name = alpha_img_name  # os.path.split(self.rim_img[idx % self.rim_num])[-1]
        sample = {'fg': fg, 'alpha': alpha, 'bg': fg, 'image_name': image_name}
        sample = self.transform_spd(sample)

        converted_sample = {
            'image': sample['image'],
            'trimap': sample['trimap'] / 2.0,
            'alpha': sample['alpha'],
            'bbox': sample['boxes'],
            'dataset_name': 'RefMatte',
            'multi_fg': False,
        }
        return converted_sample

    def __len__(self):
        if self.num_ratio is not None:
            return int(self.rim_num * self.num_ratio)  # 112506 * 0.34 = 38252 (COCONut_num-38251 + 1)
        else:
            return self.rim_num  # 112506


    
if __name__ == '__main__':
    dataset = RefMatteData(
        data_root_path = '/data/my_path_b/public_data/data/matting/RefMatte/RefMatte/train/img', 
        num_ratio=0.34,
    )
    data = dataset[0]
    '''
    fg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
    alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
    bg torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
    trimap torch.Size([1, 1024, 1024]) 0.0 or 1.0 or 2.0
    image torch.Size([3, 1024, 1024]) tensor(-2.1179) tensor(2.6400)
    boxes torch.Size([1, 4]) tensor(72.) tensor(676.)  0.0~1024.0

    COCONut:
        image torch.Size([3, 1024, 1024]) tensor(0.0006) tensor(0.9991)
        trimap torch.Size([1, 1024, 1024]) 0.0 or 0.5 or 1.0
        alpha torch.Size([1, 1024, 1024]) tensor(0.) tensor(1.)
        bbox torch.Size([1, 4]) tensor(0.) tensor(590.)
        dataset_name: 'COCONut'
    '''
    for key, val in data.items():
        if isinstance(val, torch.Tensor):
            print(key, val.shape, torch.min(val), torch.max(val))
        else:
            print(key, val.shape)