File size: 20,012 Bytes
8b4c6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from detectron2.layers import Conv2d
import fvcore.nn.weight_init as weight_init
from typing import Any, Optional, Tuple, Type

from modeling.semantic_enhanced_matting.modeling.image_encoder import Attention
from modeling.semantic_enhanced_matting.modeling.transformer import Attention as DownAttention
from modeling.semantic_enhanced_matting.feature_fusion import PositionEmbeddingRandom as ImagePositionEmbedding
from modeling.semantic_enhanced_matting.modeling.common import MLPBlock

class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x
    

class ConditionConv(nn.Module):
    """
    The standard bottleneck residual block without the last activation layer.
    It contains 3 conv layers with kernels 1x1, 3x3, 1x1.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        bottleneck_channels,
        norm=LayerNorm2d,
        act_layer=nn.GELU,
        conv_kernels=3,
        conv_paddings=1,
        condtition_channels = 1024
    ):
        """
        Args:
            in_channels (int): Number of input channels.
            out_channels (int): Number of output channels.
            bottleneck_channels (int): number of output channels for the 3x3
                "bottleneck" conv layers.
            norm (str or callable): normalization for all conv layers.
                See :func:`layers.get_norm` for supported format.
            act_layer (callable): activation for all conv layers.
        """
        super().__init__()

        self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False)
        self.norm1 = norm(bottleneck_channels)
        self.act1 = act_layer()

        self.conv2 = Conv2d(
            bottleneck_channels,
            bottleneck_channels,
            conv_kernels,
            padding=conv_paddings,
            bias=False,
        )
        self.norm2 = norm(bottleneck_channels)
        self.act2 = act_layer()

        self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False)
        self.norm3 = norm(out_channels)

        self.init_weight()

        self.condition_embedding = nn.Sequential(
            act_layer(),
            nn.Linear(condtition_channels, bottleneck_channels, bias=True)
        )

    def init_weight(self):
        for layer in [self.conv1, self.conv2, self.conv3]:
            weight_init.c2_msra_fill(layer)
        for layer in [self.norm1, self.norm2]:
            layer.weight.data.fill_(1.0)
            layer.bias.data.zero_()
        # zero init last norm layer.
        self.norm3.weight.data.zero_()
        self.norm3.bias.data.zero_()

    # def embed_bbox_and_instance(self, bbox, instance):
    #     assert isinstance(instance, bool)

    def forward(self, x, condition):
        # [B, 64, 64, 1024]
        out = x.permute(0, 3, 1, 2)

        out = self.act1(self.norm1(self.conv1(out)))
        out = self.conv2(out) + self.condition_embedding(condition)[:, :, None, None]
        out = self.act2(self.norm2(out))
        out = self.norm3(self.conv3(out))

        out = x + out.permute(0, 2, 3, 1)
        return out


class ConditionAdd(nn.Module):
    def __init__(
        self,
        act_layer=nn.GELU,
        condtition_channels = 1024
    ):
        super().__init__()

        self.condition_embedding = nn.Sequential(
            act_layer(),
            nn.Linear(condtition_channels, condtition_channels, bias=True)
        )

    def forward(self, x, condition):
        # [B, 64, 64, 1024]
        condition = self.condition_embedding(condition)[:, None, None, :]
        return x + condition

class ConditionEmbedding(nn.Module):
    def __init__(
        self,
        condition_num = 5,
        pos_embedding_dim = 128,
        embedding_scale = 1.0,
        embedding_max_period = 10000,
        embedding_flip_sin_to_cos = True,
        embedding_downscale_freq_shift = 1.0,
        time_embed_dim = 1024,
        split_embed = False
    ):
        super().__init__()
        self.condition_num = condition_num
        self.pos_embedding_dim = pos_embedding_dim
        self.embedding_scale = embedding_scale
        self.embedding_max_period = embedding_max_period
        self.embedding_flip_sin_to_cos = embedding_flip_sin_to_cos
        self.embedding_downscale_freq_shift = embedding_downscale_freq_shift
        self.split_embed = split_embed

        if self.split_embed:
            self.linear_1 = nn.Linear(pos_embedding_dim, time_embed_dim, True)
        else:
            self.linear_1 = nn.Linear(condition_num * pos_embedding_dim, time_embed_dim, True)
        self.act = nn.GELU()
        self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim, True)

    def proj_embedding(self, condition):
        sample = self.linear_1(condition)
        sample = self.act(sample)
        sample = self.linear_2(sample)
        return sample
    
    def position_embedding(self, condition):
        # [B, 5] --> [B, 5, 128] --> [B, 5 * 128]

        assert condition.shape[-1] == self.condition_num

        half_dim = self.pos_embedding_dim // 2
        exponent = -math.log(self.embedding_max_period) * torch.arange(
            start=0, end=half_dim, dtype=torch.float32, device=condition.device
        )
        exponent = exponent / (half_dim - self.embedding_downscale_freq_shift)

        emb = torch.exp(exponent)
        emb = condition[:, :, None].float() * emb[None, None, :]  # [B, 5, 1] * [1, 1, 64] --> [B, 5, 64]

        # scale embeddings
        emb = self.embedding_scale * emb

        # concat sine and cosine embeddings
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)  # [B, 5, 64] --> [B, 5, 128]

        # flip sine and cosine embeddings
        if self.embedding_flip_sin_to_cos:
            emb = torch.cat([emb[:, :, half_dim:], emb[:, :, :half_dim]], dim=-1)

        # zero pad
        # if self.pos_embedding_dim % 2 == 1:
        #     emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
        if self.split_embed:
            emb = emb.reshape(-1, emb.shape[-1])
        else:
            emb = emb.reshape(emb.shape[0], -1)

        return emb

    def forward(self, condition):
        condition = self.position_embedding(condition)
        condition = self.proj_embedding(condition)
        return condition.float()



class PositionEmbeddingRandom(nn.Module):
    """
    Positional encoding using random spatial frequencies.
    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        
        self.positional_encoding_gaussian_matrix = nn.Parameter(scale * torch.randn((2, num_pos_feats // 2)))
        # self.register_buffer(
        #     "positional_encoding_gaussian_matrix",
        #     scale * torch.randn((2, num_pos_feats)),
        # )
        point_embeddings = [nn.Embedding(1, num_pos_feats) for i in range(2)]
        self.point_embeddings = nn.ModuleList(point_embeddings)

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Positionally encode points that are normalized to [0,1]."""
        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(
        self, coords_input: torch.Tensor, image_size: Tuple[int, int]
    ) -> torch.Tensor:
        """Positionally encode points that are not normalized to [0,1]."""
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        coords =  self._pe_encoding(coords.to(torch.float))  # B x N x C

        coords[:, 0, :] += self.point_embeddings[0].weight
        coords[:, 1, :] += self.point_embeddings[1].weight

        return coords


class CrossSelfAttn(nn.Module):
    """
    Positional encoding using random spatial frequencies.
    """

    def __init__(self, embedding_dim=1024, num_heads=4, downsample_rate=4) -> None:
        super().__init__()

        self.cross_attn = DownAttention(embedding_dim=embedding_dim, num_heads=num_heads, downsample_rate=downsample_rate)
        self.norm1 = nn.LayerNorm(embedding_dim)
        self.mlp = MLPBlock(embedding_dim, mlp_dim=512)
        self.norm2 = nn.LayerNorm(embedding_dim)
        self.self_attn = DownAttention(embedding_dim=embedding_dim, num_heads=num_heads, downsample_rate=downsample_rate)
        self.norm3 = nn.LayerNorm(embedding_dim)

    def forward(self, block_feat, bbox_token, feat_pe, bbox_pe):
        B, H, W, C = block_feat.shape
        block_feat = block_feat.reshape(B, H * W, C)

        block_feat = block_feat + self.cross_attn(q=block_feat + feat_pe, k=bbox_token + bbox_pe, v=bbox_token)
        block_feat = self.norm1(block_feat)

        block_feat = block_feat + self.mlp(block_feat)
        block_feat = self.norm2(block_feat)

        concat_token = torch.concat((block_feat + feat_pe, bbox_token + bbox_pe), dim=1) 
        block_feat = block_feat + self.self_attn(q=concat_token, k=concat_token, v=concat_token)[:, :-bbox_token.shape[1]]
        block_feat = self.norm3(block_feat)
        output = block_feat.reshape(B, H, W, C)

        return output


class BBoxEmbedInteract(nn.Module):
    def __init__(
        self,
        embed_type = 'fourier',
        interact_type = 'attn',
        layer_num = 3
    ):
        super().__init__()
        assert embed_type in {'fourier', 'position', 'conv'}
        assert interact_type in {'add', 'attn', 'cross-self-attn'}
        self.embed_type = embed_type
        self.interact_type = interact_type
        self.layer_num = layer_num

        if self.embed_type == 'fourier' and self.interact_type == 'add':
            self.embed_layer = ConditionEmbedding(condition_num = 4, pos_embedding_dim = 256)
        elif self.embed_type == 'fourier':
            self.embed_layer = ConditionEmbedding(condition_num = 4, pos_embedding_dim = 256, split_embed = True)
        elif self.embed_type == 'conv':
            mask_in_chans = 16
            activation = nn.GELU
            self.embed_layer = nn.Sequential(
                nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
                LayerNorm2d(mask_in_chans // 4),
                activation(),
                nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
                LayerNorm2d(mask_in_chans),
                activation(),
                nn.Conv2d(mask_in_chans, 1024, kernel_size=1),
            )
        else:
            if self.interact_type == 'add':
                self.embed_layer = PositionEmbeddingRandom(num_pos_feats = 512)
            else:
                self.embed_layer = PositionEmbeddingRandom(num_pos_feats = 1024)

        self.interact_layer = nn.ModuleList()
        for _ in range(self.layer_num):
            if self.interact_type == 'attn':
                self.interact_layer.append(Attention(dim = 1024))
            elif self.interact_type == 'add' and self.embed_type != 'conv':
                self.interact_layer.append(nn.Sequential(
                    nn.GELU(),
                    nn.Linear(1024, 1024, bias=True)
                ))
            elif self.interact_type == 'cross-self-attn':
                self.interact_layer.append(CrossSelfAttn(embedding_dim=1024, num_heads=4, downsample_rate=4))

            self.position_layer = ImagePositionEmbedding(num_pos_feats=1024 // 2)

    def forward(self, block_feat, bbox, layer_index):
        # input: [B, 1, 4], [B, 64, 64, 1024]
        if layer_index == self.layer_num:
            return block_feat
        interact_layer = self.interact_layer[layer_index]

        bbox = bbox + 0.5  # Shift to center of pixel
        if self.embed_type == 'fourier' and self.interact_type == 'add':
            embedding = self.embed_layer(bbox[:, 0])  # [B, 1, 4] --> reshape [B, 4] --> [B, 1024 * 1] --> reshape [B, 1, 1024]
            embedding = embedding.reshape(embedding.shape[0], 1, -1)
        elif self.embed_type == 'fourier':
            embedding = self.embed_layer(bbox[:, 0])  # [B, 1, 4] --> reshape [B, 4] --> [B, 1024 * 4] --> reshape [B, 4, 1024]
            embedding = embedding.reshape(-1, 4, embedding.shape[-1])
        elif self.embed_type == 'conv':
            # concat mask and img as condition
            bbox_mask = torch.zeros(size=(block_feat.shape[0], 1, 256, 256), device=block_feat.device, dtype=block_feat.dtype)  # [B, 1, 512, 512]
            for i in range(bbox.shape[0]):
                l, u, r, d = bbox[i, 0, :] / 4
                bbox_mask[i, :, int(u + 0.5): int(d + 0.5), int(l + 0.5): int(r + 0.5)] = 1.0  # int(x + 0.5) = round(x)
            embedding = self.embed_layer(bbox_mask)  # [B, 1024, 64, 64]
        elif self.embed_type == 'position':
            embedding = self.embed_layer(bbox.reshape(-1, 2, 2), (1024, 1024))  # [B, 1, 4] --> reshape [B, 2, 2] --> [B, 2, 1024/512]
            if self.interact_type == 'add':
                embedding = embedding.reshape(embedding.shape[0], 1, -1)

        # add position embedding to block_feat
        pe = self.position_layer(size=(64, 64)).reshape(1, 64, 64, 1024)
        block_feat = block_feat + pe

        if self.interact_type == 'attn':
            add_token_num = embedding.shape[1]
            B, H, W, C = block_feat.shape
            block_feat = block_feat.reshape(B, H * W, C)
            concat_token = torch.concat((block_feat, embedding), dim=1)  # [B, 64 * 64 + 2, 1024]
            output_token = interact_layer.forward_token(concat_token)[:, :-add_token_num]
            output = output_token.reshape(B, H, W, C)
        elif self.embed_type == 'conv':
            output = block_feat + embedding.permute(0, 2, 3, 1)
        elif self.interact_type == 'add':
            output = interact_layer(embedding[:, None]) + block_feat
        elif self.interact_type == 'cross-self-attn':
            output = interact_layer(block_feat, embedding)

        return output
        

# reuse the position_point_embedding in prompt_encoder
class BBoxInteract(nn.Module):
    def __init__(
        self,
        position_point_embedding,
        point_weight,
        layer_num = 3,
    ):
        super().__init__()

        self.position_point_embedding = position_point_embedding
        self.point_weight = point_weight
        for _, p in self.named_parameters():
            p.requires_grad = False

        self.layer_num = layer_num
        self.input_image_size = (1024, 1024)

        self.interact_layer = nn.ModuleList()
        for _ in range(self.layer_num):
            self.interact_layer.append(CrossSelfAttn(embedding_dim=1024, num_heads=4, downsample_rate=4))
    
    @torch.no_grad()
    def get_bbox_token(self, boxes):
        boxes = boxes + 0.5  # Shift to center of pixel
        coords = boxes.reshape(-1, 2, 2)
        corner_embedding = self.position_point_embedding.forward_with_coords(coords, self.input_image_size)
        corner_embedding[:, 0, :] += self.point_weight[2].weight
        corner_embedding[:, 1, :] += self.point_weight[3].weight
        corner_embedding = F.interpolate(corner_embedding[..., None], size=(1024, 1), mode='bilinear', align_corners=False)[..., 0]
        return corner_embedding  # [B, 2, 1024]
    
    @torch.no_grad()
    def get_position_embedding(self, size=(64, 64)):
        pe = self.position_point_embedding(size=size)
        pe = F.interpolate(pe.permute(1, 2, 0)[..., None], size=(1024, 1), mode='bilinear', align_corners=False)[..., 0][None]
        pe = pe.reshape(1, -1, 1024)
        return pe  # [1, 64 * 64, 1024]

    def forward(self, block_feat, bbox, layer_index):
        # input: [B, 1, 4], [B, 64, 64, 1024]
        if layer_index == self.layer_num:
            return block_feat
        interact_layer = self.interact_layer[layer_index]

        pe = self.get_position_embedding()
        bbox_token = self.get_bbox_token(bbox)

        output = interact_layer(block_feat, bbox_token, feat_pe=pe, bbox_pe=bbox_token)

        return output
        
class InOutBBoxCrossSelfAttn(nn.Module):

    def __init__(self, embedding_dim=1024, num_heads=4, downsample_rate=4) -> None:
        super().__init__()

        self.self_attn = DownAttention(embedding_dim=embedding_dim, num_heads=num_heads, downsample_rate=downsample_rate)
        self.norm1 = nn.LayerNorm(embedding_dim)
        self.mlp = MLPBlock(embedding_dim, mlp_dim=embedding_dim // 2)
        self.norm2 = nn.LayerNorm(embedding_dim)
        self.cross_attn = DownAttention(embedding_dim=embedding_dim, num_heads=num_heads, downsample_rate=downsample_rate)
        self.norm3 = nn.LayerNorm(embedding_dim)

    def forward(self, in_box_token, out_box_token):

        # self-attn
        short_cut = in_box_token
        in_box_token = self.norm1(in_box_token)
        in_box_token = self.self_attn(q=in_box_token, k=in_box_token, v=in_box_token)
        in_box_token = short_cut + in_box_token

        # mlp
        in_box_token = in_box_token + self.mlp(self.norm2(in_box_token))

        # cross-attn
        short_cut = in_box_token
        in_box_token = self.norm3(in_box_token)
        in_box_token = self.cross_attn(q=in_box_token, k=out_box_token, v=out_box_token)
        in_box_token = short_cut + in_box_token

        return in_box_token


class BBoxInteractInOut(nn.Module):
    def __init__(
        self,
        num_heads = 4, 
        downsample_rate = 4,
        layer_num = 3,
    ):
        super().__init__()

        self.layer_num = layer_num
        self.input_image_size = (1024, 1024)

        self.interact_layer = nn.ModuleList()
        for _ in range(self.layer_num):
            self.interact_layer.append(InOutBBoxCrossSelfAttn(embedding_dim=1024, num_heads=num_heads, downsample_rate=downsample_rate))

    def forward(self, block_feat, bbox, layer_index):

        # input: [B, 1, 4], [B, 64, 64, 1024]
        if layer_index == self.layer_num:
            return block_feat
        interact_layer = self.interact_layer[layer_index]

        # split_in_out_bbox_token
        bbox = torch.round(bbox / self.input_image_size[0] * (block_feat.shape[1] - 1)).int()
        for i in range(block_feat.shape[0]):
            in_bbox_mask = torch.zeros((block_feat.shape[1], block_feat.shape[2]), dtype=bool, device=bbox.device)
            in_bbox_mask[bbox[i, 0, 1]: bbox[i, 0, 3], bbox[i, 0, 0]: bbox[i, 0, 2]] = True
            in_bbox_token = block_feat[i: i + 1, in_bbox_mask, :]
            out_bbox_token = block_feat[i: i + 1, ~in_bbox_mask, :]
            block_feat[i, in_bbox_mask, :] = interact_layer(in_bbox_token, out_bbox_token)

        return block_feat


if __name__ == '__main__':
    # emded = ConditionEmbedding()
    # input = torch.tensor([[100, 200, 300, 400, 512], [100, 200, 300, 400, 1024]])
    # print(input.shape)
    # output = emded(input)  # [B, 5] --> [B, 5 * 128] --> [B, 1024]

    emded = BBoxEmbedInteract(
        embed_type = 'position',
        interact_type = 'cross-self-attn'
    )
    input = torch.tensor([[[100, 200, 300, 400]], [[100, 200, 300, 400]]])  # [B, 1, 4]
    print(input.shape)
    output = emded(torch.randn((2, 64, 64, 1024)), input)  # [B, 5] --> [B, 5 * 128] --> [B, 1024]