File size: 16,126 Bytes
8b4c6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Tuple
import numpy as np
import cv2
from detectron2.layers.batch_norm import NaiveSyncBatchNorm

from modeling.semantic_enhanced_matting.modeling import TwoWayTransformer, MaskDecoder
from modeling.decoder.detail_capture import Detail_Capture
from modeling.decoder.unet_detail_capture import DetailUNet
# from nnMorpho.binary_operators import erosion


# class GenTrimapTorch(object):
#     def __init__(self, max_kernal=200):
#         self.max_kernal = max_kernal
#         self.erosion_kernels = [None] + [torch.from_numpy(cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))).float().cuda() for size in range(1, self.max_kernal)]

#     def __call__(self, mask, kernel_size):
        
#         fg_width = kernel_size
#         bg_width = kernel_size

#         fg_mask = mask
#         bg_mask = 1 - mask

#         fg_mask = erosion(fg_mask, self.erosion_kernels[fg_width], border='a')
#         bg_mask = erosion(bg_mask, self.erosion_kernels[bg_width], border='a')

#         trimap = torch.ones_like(mask) * 0.5
#         trimap[fg_mask == 1] = 1.0
#         trimap[bg_mask == 1] = 0.0

#         return trimap


class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x

class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

class MaskDecoderMatting(MaskDecoder):
    def __init__(
        self, 
        model_type, 
        checkpoint_path, 
        detail_capture, 
        mask_token_only, 
        norm_type = 'LN', 
        norm_mask_logits = False,
        with_trimap = False,
        min_kernel_size = 20,
        kernel_div = 10,
        concat_gen_trimap = False,
    ):
        super().__init__(
            transformer_dim=256,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=256,
                mlp_dim=2048,
                num_heads=8,
            ),
            num_multimask_outputs=3,
            activation=nn.GELU,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        )
        assert model_type in ["vit_b","vit_l","vit_h"]
        
        assert norm_type in {'BN', 'LN', 'SyncBN'}
        if norm_type == 'BN':
            self.norm = torch.nn.BatchNorm2d
        elif norm_type == 'SyncBN':
            self.norm = NaiveSyncBatchNorm
        else:
            self.norm = LayerNorm2d

        # checkpoint_dict = {"vit_b":"pretrained_checkpoint/sam_vit_b_maskdecoder.pth",
        #                    "vit_l":"pretrained_checkpoint/sam_vit_l_maskdecoder.pth",
        #                    'vit_h':"pretrained_checkpoint/sam_vit_h_maskdecoder.pth"}
        # checkpoint_path = checkpoint_dict[model_type]

        self.load_state_dict(torch.load(checkpoint_path))
        print("Matting Decoder init from SAM MaskDecoder")

        self.frozen_params_str = set()
        for n, p in self.named_parameters():
            p.requires_grad = False
            self.frozen_params_str.add(n)

        self.detail_capture = detail_capture
        self.mask_token_only = mask_token_only
        self.norm_mask_logits = norm_mask_logits

        transformer_dim = 256
        vit_dim_dict = {"vit_b":768,"vit_l":1024,"vit_h":1280}
        vit_dim = vit_dim_dict[model_type]

        self.hf_token = nn.Embedding(1, transformer_dim)
        self.hf_mlp = MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
        self.num_mask_tokens = self.num_mask_tokens + 1
        self.concat_gen_trimap = concat_gen_trimap

        self.compress_vit_feat = nn.Sequential(
            nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
            self.norm(transformer_dim),
            nn.GELU(), 
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 8, kernel_size=2, stride=2)
        )
        
        self.embedding_encoder = nn.Sequential(
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
            self.norm(transformer_dim // 4),
            nn.GELU(),
            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
        )

        self.embedding_maskfeature = nn.Sequential(
            nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1), 
            self.norm(transformer_dim // 4),
            nn.GELU(),
            nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1)
        )

        if isinstance(self.detail_capture, Detail_Capture):
            self.glue_layer_0 = nn.Conv2d(self.detail_capture.fus_channs[2], transformer_dim // 8, 3, 1, 1)
        else:
            assert isinstance(self.detail_capture, DetailUNet)

        self.trainable_params_str = set()
        for n, p in self.named_parameters():
            if p.requires_grad:
                self.trainable_params_str.add(n)

        self.with_trimap = with_trimap
        self.min_kernel_size = min_kernel_size
        self.kernel_div = kernel_div
        if self.with_trimap and not self.concat_gen_trimap:
            # self.gen_trimap = GenTrimapTorch()
            raise ValueError('Discard GenTrimapTorch')

        # self.trainable_params_str = {'detail_capture', 'hf_token', 'hf_mlp', 'compress_vit_feat', 'embedding_encoder', 'embedding_maskfeature', 'glue_layer_0'}
        # for n, p in self.named_parameters():
        #     if p.requires_grad:
        #         assert n.split('.')[0] in self.trainable_params_str

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
        # hq_token_only: bool,
        interm_embeddings: torch.Tensor,
        hq_features: torch.Tensor,
        images: torch.Tensor,
        hr_images_ori_h_w = None,
        return_alpha_logits = False,
        pred_trimap=None
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Arguments:
          image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
          multimask_output (bool): Whether to return multiple masks or a single
            mask.

        Returns:
          torch.Tensor: batched predicted hq masks
        """
        vit_features = interm_embeddings[0].permute(0, 3, 1, 2) # early-layer ViT feature, after 1st global attention block in ViT [B, 64, 64, 768]

        # upsample image_embeddings x4.0 with detail_capture & embedding_encoder & compress_vit_feat
            # regard hq_features as condition
        if isinstance(self.norm_mask_logits, float):
            norm_hq_features = hq_features / self.norm_mask_logits
        elif self.norm_mask_logits:
            norm_hq_features = hq_features / torch.std(hq_features, dim=(1, 2, 3), keepdim=True)
        else:
            norm_hq_features = hq_features

        if hr_images_ori_h_w is not None:
            assert not isinstance(self.detail_capture, Detail_Capture) and hq_features.shape[-2] == hq_features.shape[-1] == 1024
            lr_images_before_pad_h_w = (1024 / max(hr_images_ori_h_w) * hr_images_ori_h_w[0], 1024 / max(hr_images_ori_h_w) * hr_images_ori_h_w[1])
            lr_images_before_pad_h_w = (int(lr_images_before_pad_h_w[0] + 0.5), int(lr_images_before_pad_h_w[1] + 0.5))
            norm_hq_features = F.interpolate(
                norm_hq_features[:, :, :lr_images_before_pad_h_w[0], :lr_images_before_pad_h_w[1]], 
                size = (images.shape[-2], images.shape[-1]), 
                mode = 'bilinear', 
                align_corners = False
            )
        
        if self.concat_gen_trimap:
            pred_trimap = F.interpolate(pred_trimap, size=(images.shape[-2], images.shape[-1]), mode='bilinear', align_corners=False)
            pred_trimap = torch.argmax(pred_trimap, dim=1, keepdim=True).float() / 2.0
            norm_hq_features = torch.concat((norm_hq_features, pred_trimap), dim=1)
        elif self.with_trimap:
            mask = (norm_hq_features > 0).float()
            for i_batch in range(image_embeddings.shape[0]):
                mask_area = torch.sum(mask[i_batch])
                kernel_size = max(self.min_kernel_size, int((mask_area ** 0.5) / self.kernel_div))
                kernel_size = min(kernel_size, self.gen_trimap.max_kernal - 1)
                mask[i_batch, 0] = self.gen_trimap(mask[i_batch, 0], kernel_size=kernel_size)
            trimaps = mask
            norm_hq_features = torch.concat((norm_hq_features, trimaps), dim=1)

        conditional_images = torch.concatenate((images, norm_hq_features), dim=1)  # [B, 4, 1024, 1024]

        if isinstance(self.detail_capture, Detail_Capture):
            detail_features = self.detail_capture.convstream(conditional_images)  # [B, 4, 1024, 1024] --> D0: [B, 4, 1024, 1024], D1: [B, 48, 512, 512], D2: [B, 96, 256, 256], D3: [B, 192, 128, 128]
            matting_features = self.detail_capture.fusion_blks[0](image_embeddings, detail_features['D3'])  # [B, 256, 64, 64] & [B, 192, 128, 128] --> [B, 256, 128, 128]
            matting_features = self.detail_capture.fusion_blks[1](matting_features, detail_features['D2'])  # [B, 256, 128, 128] & [B, 96, 256, 256] --> [B, 128, 256, 256]
            matting_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features) + self.glue_layer_0(matting_features)  # [B, 32, 256, 256]
        else:
            matting_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(vit_features)

        batch_len = len(image_embeddings)
        masks = []
        iou_preds = []
        for i_batch in range(batch_len):
            mask, iou_pred = self.predict_masks(
                image_embeddings=image_embeddings[i_batch].unsqueeze(0),
                image_pe=image_pe,
                sparse_prompt_embeddings=sparse_prompt_embeddings[i_batch],
                dense_prompt_embeddings=dense_prompt_embeddings[i_batch],
                matting_feature = matting_features[i_batch].unsqueeze(0)
            )
            masks.append(mask)
            iou_preds.append(iou_pred)
        masks = torch.cat(masks, 0)  # [B, 5, 256, 256]
        iou_preds = torch.cat(iou_preds, 0)  # [4, 4]

        if self.mask_token_only:
            masks_matting = masks[:,slice(self.num_mask_tokens-1, self.num_mask_tokens), :, :]  # [B, 1, 256, 256]
        else:
            masks_matting = masks  # [B, 5, 256, 256]

        if hr_images_ori_h_w is not None:
            vit_features = F.interpolate(
                vit_features[:, :, :math.ceil(lr_images_before_pad_h_w[0] / 16), :math.ceil(lr_images_before_pad_h_w[1] / 16)], 
                size = (images.shape[-2] // 16, images.shape[-1] // 16), 
                mode = 'bilinear', 
                align_corners = False
            )
            masks_matting = F.interpolate(
                masks_matting[:, :, :math.ceil(lr_images_before_pad_h_w[0] / 4), :math.ceil(lr_images_before_pad_h_w[1] / 4)], 
                size = (images.shape[-2] // 4, images.shape[-1] // 4), 
                mode = 'bilinear', 
                align_corners = False
            )

        if isinstance(self.detail_capture, Detail_Capture):
            matting_features = self.detail_capture.fusion_blks[2](masks_matting, detail_features['D1'])
            matting_features = self.detail_capture.fusion_blks[3](matting_features, detail_features['D0'])
            alpha = torch.sigmoid(self.detail_capture.matting_head(matting_features))
        else:
            if return_alpha_logits:
                output = self.detail_capture(conditional_images, vit_features, masks_matting, return_alpha_logits = True)
                alpha = torch.sigmoid(output[0]), output[1]
            else:
                alpha = torch.sigmoid(self.detail_capture(conditional_images, vit_features, masks_matting, return_alpha_logits = False))

        if hr_images_ori_h_w is not None:
            alpha = alpha[:, :, :hr_images_ori_h_w[0], :hr_images_ori_h_w[1]]
        
        return alpha
    
    def predict_masks(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        matting_feature: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """Predicts masks. See 'forward' for more details."""

        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight], dim=0)  # [6, 256]
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)  # [1, 6, 256]
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)  # [1, 8, 256]

        # Expand per-image data in batch direction to be per-mask
        src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)   # [1, 256, 64, 64]
        src = src + dense_prompt_embeddings  # [1, 256, 64, 64] + [1, 256, 64, 64]
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)  # [1, 256, 64, 64]
        b, c, h, w = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)  # [1, 8, 256], [1, 4096, 256]
        iou_token_out = hs[:, 0, :]  # [1, 256]
        mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]  # [1, 5, 256]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)  # [1, 256, 64, 64]

        upscaled_embedding_sam = self.output_upscaling(src)  # [1, 32, 256, 256]
        upscaled_embedding_ours = self.embedding_maskfeature(upscaled_embedding_sam) + matting_feature  # [1, 32, 256, 256]
        
        hyper_in_list: List[torch.Tensor] = []
        for i in range(self.num_mask_tokens):
            if i < 4:
                hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
            else:
                hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))

        hyper_in = torch.stack(hyper_in_list, dim=1)  # 5 * [1, 32] --> [1, 5, 32]
        b, c, h, w = upscaled_embedding_sam.shape

        masks_sam = (hyper_in[:,:4] @ upscaled_embedding_sam.view(b, c, h * w)).view(b, -1, h, w)  # [1, 4, 32] @ [1, 32, 65536] --> [1, 4, 256, 256]
        masks_ours = (hyper_in[:,4:] @ upscaled_embedding_ours.view(b, c, h * w)).view(b, -1, h, w)  # [1, 1, 32] @ [1, 32, 65536] --> [1, 1, 256, 256]
        masks = torch.cat([masks_sam,masks_ours], dim=1)  # [1, 5, 256, 256]
        
        iou_pred = self.iou_prediction_head(iou_token_out)

        return masks, iou_pred