File size: 35,372 Bytes
8b4c6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import os
import numpy as np
from PIL import Image
from copy import deepcopy
from collections import defaultdict

from detectron2.structures import ImageList
from detectron2.utils.comm import get_local_rank
from modeling.semantic_enhanced_matting.predictor import SamPredictor
from modeling.semantic_enhanced_matting.condition_conv import ConditionConv, ConditionEmbedding, ConditionAdd, BBoxEmbedInteract, BBoxInteract, BBoxInteractInOut
from modeling.semantic_enhanced_matting.modeling.image_encoder import PatchEmbed
from modeling.semantic_enhanced_matting.modeling.common import LayerNorm2d
from modeling.decoder.unet_detail_capture import MattingDetailDecoder
from modeling.semantic_enhanced_matting.feature_fusion import FeatureFusion
from sam2.sam2_image_predictor import SAM2ImagePredictor

from modeling.semantic_enhanced_matting.modeling.mask_decoder_hq_matting import MaskDecoderHQMatting
from modeling.semantic_enhanced_matting.modeling import TwoWayTransformer

from peft import LoraConfig, get_peft_model
from peft.tuners.lora.layer import LoraLayer
from peft.tuners.tuners_utils import BaseTunerLayer

from data.rand_augment import RandAugment
import random
import kornia.filters as kf


class SamHqMatte(nn.Module):

    target_length = 1024

    def __init__(
        self,
        *,
        sam_model,
        hq_token_only,
        hq_features_type,
        matting_decoder,
        criterion,
        pixel_mean,
        pixel_std,
        multimask_output=False,
        vis_period=None,
        output_dir=None,
        lora_rank = None,
        lora_alpha = None,
        lora_target_modules = ["qkv", "proj"],
        lora_dropout = 0.1,
        w_dora = False,
        w_rslora = False,
        lora_on_mask_decoder = False,
        frozen_sam_hq_reg = None,
        reg_margin = 0.85,
        w_attention_mask = False,
        alpha_reg_range = None,
        alpha_reg_weight = 1.0,
        coconut_pl = False,
        coconut_pl_alpha = 1.0,
        coconut_self_training = False,
        eval_w_sam_hq_mask = False,
        backbone_condition = False,
        condition_wo_conv = False,
        w_only_bbox_cond = False,
        coconut_only_known_l1 = False,
        backbone_bbox_prompt = None,
        backbone_bbox_prompt_loc = [2, 3], 
        backbone_bbox_prompt_loss_weight = 1.0,
        concat_gen_trimap = False,
        multi_matting_decoder = None,
        w_all_logits = False,
        bbox_prompt_all_block = None,
        matting_token = False,
        test_w_hq_token = False,
        sam_hq_token_reg = None,
        feat_cross_attn_fusion = False,
        trimap_loss_type = None,
        reg_on_sam_logits = False,
        reg_w_bce_loss = False,
        complex_trimap_pred_layer = False,
        matting_token_sup = None,
        matting_token_sup_loss_weight = None,
        sam2 = False,
    ):
        super(SamHqMatte, self).__init__()

        self.sam_model = sam_model
        self.sam_predictor = SamPredictor(self.sam_model) if not sam2 else SAM2ImagePredictor(self.sam_model)  # already in eval mode and no_grad
        self.hq_token_only = hq_token_only
        self.multimask_output = multimask_output
        self.hq_features_type = hq_features_type

        self.matting_decoder = matting_decoder

        self.criterion = criterion

        self.register_buffer(
            "pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False
        )
        self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
        assert (
            self.pixel_mean.shape == self.pixel_std.shape
        ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!"

        self.vis_period = vis_period
        if output_dir is not None and output_dir != '?':
            self.output_dir = os.path.join(output_dir, 'vis_results')
            os.makedirs(self.output_dir, exist_ok=True)
        self.train_iter_index = 0

        self.lora_rank = lora_rank
        self.lora_alpha = lora_alpha
        self.lora_target_modules = lora_target_modules
        self.lora_dropout = lora_dropout
        self.w_dora = w_dora
        self.w_rslora = w_rslora
        self.lora_on_mask_decoder = lora_on_mask_decoder
        self.frozen_sam_hq_reg = frozen_sam_hq_reg
        self.reg_margin = reg_margin
        self.w_attention_mask = w_attention_mask
        self.alpha_reg_range = alpha_reg_range
        self.alpha_reg_weight = alpha_reg_weight
        self.coconut_pl = coconut_pl
        self.coconut_pl_alpha = coconut_pl_alpha
        self.coconut_self_training = coconut_self_training
        self.eval_w_sam_hq_mask = eval_w_sam_hq_mask
        self.backbone_condition = backbone_condition
        self.condition_wo_conv = condition_wo_conv
        self.w_only_bbox_cond = w_only_bbox_cond
        self.coconut_only_known_l1 = coconut_only_known_l1
        self.backbone_bbox_prompt = backbone_bbox_prompt
        self.backbone_bbox_prompt_loc = backbone_bbox_prompt_loc
        self.backbone_bbox_prompt_loss_weight = backbone_bbox_prompt_loss_weight
        self.concat_gen_trimap = concat_gen_trimap
        self.multi_matting_decoder = multi_matting_decoder
        self.w_all_logits = w_all_logits
        self.bbox_prompt_all_block = bbox_prompt_all_block
        self.matting_token = matting_token
        self.test_w_hq_token = test_w_hq_token
        self.sam_hq_token_reg = sam_hq_token_reg
        self.feat_cross_attn_fusion = feat_cross_attn_fusion
        self.trimap_loss_type = trimap_loss_type
        self.reg_on_sam_logits = reg_on_sam_logits
        self.reg_w_bce_loss = reg_w_bce_loss
        self.complex_trimap_pred_layer = complex_trimap_pred_layer
        self.matting_token_sup = matting_token_sup
        self.sam2 = sam2
        assert self.matting_token_sup in {'alpha', 'trimap', None}
        self.matting_token_sup_loss_weight = matting_token_sup_loss_weight
        if self.matting_token_sup is not None:
            assert self.backbone_bbox_prompt in {'bbox', None}
        if self.frozen_sam_hq_reg is not None:
            assert self.lora_rank is not None
        if self.w_attention_mask:
            self.attention_head = deepcopy(self.matting_decoder)
        if self.coconut_self_training:
            self.rand_aug = RandAugment(3,6)
            self.warm_iter_coconut_self_training = 5000
        if self.backbone_condition:
            assert self.lora_rank is not None
        if self.backbone_bbox_prompt is not None:
            assert self.lora_rank is not None
        if self.w_all_logits:
            self.sam_predictor.model.mask_decoder.w_all_logits = True
        if self.bbox_prompt_all_block:
            assert self.lora_rank is not None
        if self.matting_token and not self.sam2:
            self.sam_predictor.model.mask_decoder.hq_token_only = self.hq_token_only

    @property
    def device(self):
        return self.pixel_mean.device

    def init_lora(self, model=None):
        if model is not None and self.lora_rank >= 1:
            if self.lora_on_mask_decoder:
                self.lora_target_modules += ["q_proj", "k_proj", "v_proj", "out_proj"]
                modules_to_save = None
            else:
                modules_to_save = ['matting_decoder']

            lora_config = LoraConfig(
                r=self.lora_rank,
                lora_alpha=self.lora_alpha,
                use_rslora=self.w_rslora,
                use_dora=self.w_dora,
                init_lora_weights="gaussian",
                target_modules=self.lora_target_modules,
                lora_dropout=self.lora_dropout,
                modules_to_save=modules_to_save
            )
            model = get_peft_model(model, lora_config)
            if self.lora_on_mask_decoder:
                for n, p in model.matting_decoder.named_parameters():
                    if n.split('modules_to_save.default.')[-1] in model.matting_decoder.trainable_params_str:
                        p.requires_grad = True
            else:
                for n, p in model.matting_decoder.named_parameters():
                    if n.split('modules_to_save.default.')[-1] in model.matting_decoder.frozen_params_str:
                        p.requires_grad = False
            return model
        elif self.lora_rank >= 1:
            lora_config = LoraConfig(
                r=self.lora_rank,
                lora_alpha=self.lora_alpha,
                use_rslora=self.w_rslora,
                use_dora=self.w_dora,
                init_lora_weights="gaussian",
                target_modules=self.lora_target_modules,
                lora_dropout=self.lora_dropout,
            )
            self.sam_predictor.model.image_encoder = get_peft_model(self.sam_predictor.model.image_encoder, lora_config)

            if self.sam2:
                for n, p in self.sam_predictor.model.image_encoder.named_parameters():
                    if 'bbox_mask' in n:
                        p.requires_grad = True

        if self.backbone_condition:
            if self.w_only_bbox_cond:
                self.condition_embedding = ConditionEmbedding(condition_num = 4, pos_embedding_dim = 160)
            else:
                self.condition_embedding = ConditionEmbedding(condition_num = 5, pos_embedding_dim = 128)

            if self.condition_wo_conv:
                self.condition_conv = nn.ModuleList([ConditionAdd() for _ in range(4)])
            else:
                self.condition_conv = nn.ModuleList([ConditionConv(
                    in_channels = self.sam_predictor.model.image_encoder.embed_dim, 
                    out_channels = self.sam_predictor.model.image_encoder.embed_dim,
                    bottleneck_channels = 512
                ) for _ in range(4)])
        
        if self.backbone_bbox_prompt is not None and not self.sam2:
            self.condition_layer = nn.ModuleDict()
            self.condition_layer['patch_embed'] =  PatchEmbed(
                kernel_size=(self.sam_predictor.model.image_encoder.patch_size, self.sam_predictor.model.image_encoder.patch_size),
                stride=(self.sam_predictor.model.image_encoder.patch_size, self.sam_predictor.model.image_encoder.patch_size),
                in_chans=4,
                embed_dim=self.sam_predictor.model.image_encoder.embed_dim,
            )
            if self.multi_matting_decoder is None:
                if self.backbone_bbox_prompt in {'trimap', 'alpha_trimap'}:
                    transformer_dim = self.sam_predictor.model.image_encoder.embed_dim
                    for i in self.backbone_bbox_prompt_loc:
                        if self.complex_trimap_pred_layer:
                            self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
                                nn.ConvTranspose2d(transformer_dim, transformer_dim // 2, kernel_size=2, stride=2),
                                LayerNorm2d(transformer_dim // 2),  # 512
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 2, transformer_dim // 4, kernel_size=3, stride=1, padding=1),
                                LayerNorm2d(transformer_dim // 4),  # 256
                                nn.GELU(),
                                nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                                LayerNorm2d(transformer_dim // 8),  # 128
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 8, transformer_dim // 16, kernel_size=3, stride=1, padding=1),
                                LayerNorm2d(transformer_dim // 16),  # 64
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 16, 3, kernel_size=3, stride=1, padding=1),
                            )
                        else:
                            self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
                                nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                                LayerNorm2d(transformer_dim // 4),
                                nn.GELU(),
                                nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 8, 3, kernel_size=1, stride=1),
                            )
                elif self.backbone_bbox_prompt == 'alpha':
                    transformer_dim = self.sam_predictor.model.image_encoder.embed_dim
                    for i in self.backbone_bbox_prompt_loc:
                        if self.complex_trimap_pred_layer:
                            self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
                                nn.ConvTranspose2d(transformer_dim, transformer_dim // 2, kernel_size=2, stride=2),
                                LayerNorm2d(transformer_dim // 2),  # 512
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 2, transformer_dim // 4, kernel_size=3, stride=1, padding=1),
                                LayerNorm2d(transformer_dim // 4),  # 256
                                nn.GELU(),
                                nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                                LayerNorm2d(transformer_dim // 8),  # 128
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 8, transformer_dim // 16, kernel_size=3, stride=1, padding=1),
                                LayerNorm2d(transformer_dim // 16),  # 64
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 16, 1, kernel_size=3, stride=1, padding=1),
                                nn.Sigmoid()
                            )
                        else:
                            self.condition_layer['{}_pred_layer'.format(i)] = nn.Sequential(
                                nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
                                LayerNorm2d(transformer_dim // 4),
                                nn.GELU(),
                                nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
                                nn.GELU(),
                                nn.Conv2d(transformer_dim // 8, 1, kernel_size=1, stride=1),
                                nn.Sigmoid()
                            )
            if self.bbox_prompt_all_block is not None:
                if self.bbox_prompt_all_block == 'reuse_cross-self-attn':
                    self.condition_layer['prompt_layer'] = BBoxInteract(
                        position_point_embedding = deepcopy(self.sam_predictor.model.prompt_encoder.pe_layer), 
                        point_weight = deepcopy(self.sam_predictor.model.prompt_encoder.point_embeddings)
                    )
                elif self.bbox_prompt_all_block == 'in-out-bbox_cross-self-attn':
                    self.condition_layer['prompt_layer'] = BBoxInteractInOut(downsample_rate = 2)
                else:
                    embed_type, interact_type = self.bbox_prompt_all_block.split('_')
                    self.condition_layer['prompt_layer'] = BBoxEmbedInteract(embed_type, interact_type)

        if self.feat_cross_attn_fusion:
            self.condition_layer['feature_fusion'] = FeatureFusion(in_channels=self.sam_predictor.model.image_encoder.embed_dim, attn_compression_ratio=8)

    def condition_bbox_and_instance_num(self):
        self.sam_predictor.model.image_encoder.conv_necks = None

    def forward_samhq_and_matting_decoder(self, images, bbox, condition_proj=None, return_hq_token=False):
        # get features from SAM image encoder
        if self.sam2:
            interm_features, sam2_logits, matting_logits, pred_trimap = self.forward_samhq(images, bbox, condition_proj)
            sam2_logits = F.interpolate(sam2_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)
            matting_logits = F.interpolate(matting_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)
            sam_hq_matting_token = {
                'masks_hq': sam2_logits,
                'masks_matting': matting_logits
            }
            hq_features = matting_logits
            low_res_masks = matting_logits
        else:
            if self.matting_token:
                features, image_pe, sparse_embeddings, dense_embeddings, interm_features, sam_hq_matting_token, pred_trimap = self.forward_samhq(images, bbox, condition_proj)
                if return_hq_token:
                    return sam_hq_matting_token['masks_hq']
                else:
                    if not self.training and self.test_w_hq_token:
                        low_res_masks, hq_features = sam_hq_matting_token['masks_hq'], sam_hq_matting_token['masks_hq']
                    else:
                        low_res_masks, hq_features = sam_hq_matting_token['masks_matting'], sam_hq_matting_token['masks_matting']
            else:
                features, image_pe, sparse_embeddings, dense_embeddings, interm_features, hq_features, sam_logits, low_res_masks, pred_trimap = self.forward_samhq(images, bbox, condition_proj)
                if return_hq_token:
                    return hq_features
                sam_hq_matting_token = {'masks_hq': hq_features, 'masks_sam': sam_logits}

        # get alpha from our proposed matting_decoder
        if isinstance(self.matting_decoder, MattingDetailDecoder):
            pred_alpha = self.matting_decoder(
                images = images,
                hq_features = hq_features,
                vit_intern_feat = interm_features,
                return_alpha_logits = (self.alpha_reg_range is not None),
                pred_trimap = pred_trimap
            )
        else:
            pred_alpha = self.matting_decoder(
                image_embeddings = features,  # [B, 256, 64, 64]
                image_pe = image_pe,
                sparse_prompt_embeddings = sparse_embeddings,
                dense_prompt_embeddings = dense_embeddings,
                multimask_output = False,
                interm_embeddings = interm_features,  # [B, 256, 64, 64]
                hq_features = hq_features,
                images = images,
                return_alpha_logits = (self.alpha_reg_range is not None),
                pred_trimap = pred_trimap
            )
        return low_res_masks, pred_alpha, pred_trimap, sam_hq_matting_token

    def forward(self, batched_inputs):  # image: [1, 3, 643, 960]: 0.0~1.0, trimap: [1, 1, 643, 960]: 0.0~1.0

        inputs = self.preprocess_inputs(batched_inputs) 
        images, bbox, gt_alpha, trimap, condition = inputs['images'], inputs['bbox'], inputs['alpha'], inputs['trimap'], inputs['condition']

        if self.backbone_condition:
            condition_proj = self.condition_embedding(condition) 
        elif self.backbone_bbox_prompt is not None or self.bbox_prompt_all_block is not None:
            condition_proj = bbox
        else:
            condition_proj = None

        low_res_masks, pred_alpha, pred_trimap, sam_hq_matting_token = self.forward_samhq_and_matting_decoder(images, bbox, condition_proj)
        
        assert not self.training
        if self.eval_w_sam_hq_mask:
            self.sam_predictor.model.image_encoder.disable_adapter_layers()
            with torch.no_grad():
                ori_features, ori_interm_features = self.sam_predictor.model.image_encoder(images)
                samhq_low_res_masks = self.forward_samhq_others(images, bbox, ori_features, ori_interm_features)[-1]
                samhq_low_res_masks = F.interpolate(samhq_low_res_masks, size=(images.shape[-2], images.shape[-1]), mode='bilinear', align_corners=False)
            self.sam_predictor.model.image_encoder.enable_adapter_layers()

            return pred_alpha, samhq_low_res_masks
        else:
            return pred_alpha
        
    def forward_samhq_image_encoder(self, images, condition_proj=None):
        if self.sam2:
            backbone_out = self.sam_predictor.model.forward_image([images, condition_proj])
            _, vision_feats, _, _ = self.sam_predictor.model._prepare_backbone_features(backbone_out)
            # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
            if self.sam_predictor.model.directly_add_no_mem_embed:
                vision_feats[-1] = vision_feats[-1] + self.sam_predictor.model.no_mem_embed
            feats = [
                feat.permute(1, 2, 0).view(feat.shape[1], -1, *feat_size)
                for feat, feat_size in zip(vision_feats[::-1], self.sam_predictor._bb_feat_sizes[::-1])
            ][::-1]
            return {"image_embed": feats[-1], "high_res_feats": feats[:-1]}, None, None
        else:
            if self.backbone_condition:
                condition_layer = self.condition_conv 
            elif self.backbone_bbox_prompt:
                condition_layer = self.condition_layer
            else:
                condition_layer = None
            # [B, 3, 1024, 1024]: -2. ~ 2. --> [B, 256, 64, 64], 4 x [B, 64, 64, 768]
            features, interm_features, pred_trimap = self.sam_predictor.model.image_encoder(images, condition_proj, condition_layer)
            return features, interm_features, pred_trimap
    
    # @torch.no_grad()
    def forward_samhq_others(self, images, bbox, features, interm_features):
        if self.sam2:
            sam2_logits, matting_logits = self.sam_predictor.predict_batch_boxes_and_features(bbox, features)
            return features, sam2_logits, matting_logits
        
        image_pe = self.sam_predictor.model.prompt_encoder.get_dense_pe()

        cat_sparse_embeddings = []
        cat_dense_prompt_embeddings = []
        cat_hq_features = []
        cat_sam_logits = []
        cat_low_res_masks = []
        cat_sam_hq_matting_token = defaultdict(list)

        for idx in range(images.shape[0]):
            # get hq_features from SAM_HQ mask decoder

                # Embed prompts
            sparse_embeddings, dense_embeddings = self.sam_predictor.model.prompt_encoder(
                points=None,
                # boxes=bbox[idx: idx + 1],
                boxes=bbox[idx],  # [N, 4]
                masks=None,
            )  # [B, 2, 256], [B, 256, 64, 64]

                # Predict masks
            if isinstance(self.sam_predictor.model.mask_decoder, MaskDecoderHQMatting):
                sam_hq_matting_token = self.sam_predictor.model.mask_decoder(
                    image_embeddings = features[idx: idx + 1],
                    image_pe = image_pe,
                    sparse_prompt_embeddings = sparse_embeddings,
                    dense_prompt_embeddings = dense_embeddings,
                    multimask_output = self.multimask_output,
                    interm_embeddings = [interm_feature[idx: idx + 1] for interm_feature in interm_features],
                )
                for key in sam_hq_matting_token.keys():
                    cat_sam_hq_matting_token[key].append(sam_hq_matting_token[key])
            else:
                low_res_masks, masks_sam, hq_features = self.sam_predictor.model.mask_decoder(
                    image_embeddings = features[idx: idx + 1],
                    image_pe = image_pe,
                    sparse_prompt_embeddings = sparse_embeddings,
                    dense_prompt_embeddings = dense_embeddings,
                    multimask_output = self.multimask_output,
                    hq_token_only = self.hq_token_only,
                    interm_embeddings = [interm_feature[idx: idx + 1] for interm_feature in interm_features],
                    return_hq_features_type = self.hq_features_type
                )
                cat_hq_features.append(hq_features)
                cat_sam_logits.append(masks_sam)
                cat_low_res_masks.append(low_res_masks)

            cat_sparse_embeddings.append(sparse_embeddings)
            cat_dense_prompt_embeddings.append(dense_embeddings)
            
        sparse_embeddings = torch.stack(cat_sparse_embeddings, dim=0)  # [B, 1, 2, 256]
        dense_embeddings = torch.stack(cat_dense_prompt_embeddings, dim=0)  # [B, 1, 256, 64, 64]
        
        if self.matting_token:
            for key in cat_sam_hq_matting_token.keys():
                cat_sam_hq_matting_token[key] = torch.cat(cat_sam_hq_matting_token[key], dim=0)
                cat_sam_hq_matting_token[key] = F.interpolate(cat_sam_hq_matting_token[key], size=images.shape[-2:], mode='bilinear', align_corners=False)
            sam_hq_matting_token = cat_sam_hq_matting_token
            return features, image_pe, sparse_embeddings, dense_embeddings, interm_features, sam_hq_matting_token
        else:
            hq_features = torch.cat(cat_hq_features, dim=0)  # [B, 1, 256, 256]
            low_res_masks = torch.cat(cat_low_res_masks, dim=0)  # [B, 1, 256, 256]
            hq_features = F.interpolate(hq_features, size=images.shape[-2:], mode='bilinear', align_corners=False)  # [B, 1, 256, 256] --> [B, 1, 1024, 1024]
            sam_logits = torch.cat(cat_sam_logits, dim=0)
            sam_logits = F.interpolate(sam_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)  # [B, 1, 256, 256] --> [B, 1, 1024, 1024]
            return features, image_pe, sparse_embeddings, dense_embeddings, interm_features, hq_features, sam_logits, low_res_masks

    def forward_samhq(self, images, bbox, condition_proj=None):
        if self.lora_rank is None:
            with torch.no_grad():
                features, interm_features, pred_trimap = self.forward_samhq_image_encoder(images, condition_proj)
        else:
            features, interm_features, pred_trimap = self.forward_samhq_image_encoder(images, condition_proj)

        return self.forward_samhq_others(images, bbox, features, interm_features) + (pred_trimap, )

    def get_frozen_sam_logits(self, images, bbox, mask_type='hq'):
        
        if self.sam2:
            features, _, _ = self.forward_samhq_image_encoder(images)
            sam2_logits = self.sam_predictor.predict_batch_boxes_and_features(bbox, features, wo_matting_token=True)
            sam2_logits = F.interpolate(sam2_logits, size=images.shape[-2:], mode='bilinear', align_corners=False)
            return sam2_logits

        assert mask_type in {'hq', 'sam'} 
        features, interm_features, _ = self.forward_samhq_image_encoder(images)
        image_pe = self.sam_predictor.model.prompt_encoder.get_dense_pe()

        cat_logits = []
        for idx in range(images.shape[0]):
            sparse_embeddings, dense_embeddings = self.sam_predictor.model.prompt_encoder(points=None, boxes=bbox[idx], masks=None)

            low_res_masks, masks_sam, hq_features = self.sam_predictor.model.frozen_mask_decoder(
                image_embeddings = features[idx: idx + 1],
                image_pe = image_pe,
                sparse_prompt_embeddings = sparse_embeddings,
                dense_prompt_embeddings = dense_embeddings,
                multimask_output = self.multimask_output,
                hq_token_only = self.hq_token_only,
                interm_embeddings = [interm_feature[idx: idx + 1] for interm_feature in interm_features],
                return_hq_features_type = self.hq_features_type
            )
            if mask_type == 'hq':
                cat_logits.append(hq_features)  
            else:
                cat_logits.append(masks_sam)  
        
        logits = torch.cat(cat_logits, dim=0)  # [B, 1, 256, 256]
        logits = F.interpolate(logits, size=images.shape[-2:], mode='bilinear', align_corners=False)  # [B, 1, 256, 256] --> [B, 1, 1024, 1024]
        return logits

    def vis_training_results(self, **kwargs):
        # images, bbox, trimap, low_res_masks, pred_alpha, alpha
        self.train_iter_index += 1
        if self.train_iter_index % self.vis_period == 0:
            batch_save_results = []
            save_path = os.path.join(self.output_dir, '{:06d}_rank{}.jpg'.format(self.train_iter_index, get_local_rank()))
            
            # [('images', (4, 3, 1024, 1024), -2.117904, 2.64), ('bbox', (4, 1, 4), 0.0, 1023.0), ('trimap', (4, 1, 1024, 1024), 0.0, 1.0), ('low_res_masks', (4, 1, 256, 256), -20.38, 10.15), ('pred_alpha', (4, 1, 1024, 1024), 0.1547, 0.791), ('alpha', (4, 1, 1024, 1024), 0.0, 1.0)]
            for key in kwargs.keys():
                if key == 'bbox':
                    continue
                # turn all tensor to [B, H, W, 3]: 0~255 np.int8
                if key == 'images':
                    kwargs[key] = kwargs[key] * self.pixel_std + self.pixel_mean
                    kwargs[key] = kwargs[key].permute(0, 2, 3, 1) * 255.0
                    for i in range(kwargs['images'].shape[0]):
                        l, u, r, d = int(kwargs['bbox'][i, 0, 0].item()), int(kwargs['bbox'][i, 0, 1].item()), int(kwargs['bbox'][i, 0, 2].item()), int(kwargs['bbox'][i, 0, 3].item())
                        red_line = torch.tensor([[255., 0., 0.]], device=kwargs[key].device, dtype=kwargs[key].dtype)
                        kwargs[key][i, u: d, l, :] = red_line
                        kwargs[key][i, u: d, r, :] = red_line
                        kwargs[key][i, u, l: r, :] = red_line
                        kwargs[key][i, d, l: r, :] = red_line
                elif key in {'low_res_masks', 'frozen_hq_token'}:
                    if torch.max(kwargs[key]) <= 1:  # coconut ori alpha
                        kwargs[key] = kwargs[key].permute(0, 2, 3, 1).repeat(1, 1, 1, 3) * 255.0
                    else:
                        kwargs[key] = F.interpolate(kwargs[key], size=(kwargs['images'].shape[-3], kwargs['images'].shape[-2]), mode='bilinear', align_corners=False)
                        kwargs[key] = (kwargs[key] > self.sam_predictor.model.mask_threshold).float().permute(0, 2, 3, 1).repeat(1, 1, 1, 3) * 255.0
                else:
                    kwargs[key] = kwargs[key].permute(0, 2, 3, 1).repeat(1, 1, 1, 3) * 255.0

                kwargs[key] = np.uint8(kwargs[key].detach().cpu().numpy())

            for i in range(kwargs['images'].shape[0]):
                save_results = []
                for key in kwargs.keys():
                    if key != 'bbox':
                        save_results.append(kwargs[key][i])
                batch_save_results.append(np.concatenate(save_results, axis=1))
            
            Image.fromarray(np.concatenate(batch_save_results, axis=0)).save(save_path)

    def preprocess_inputs(self, batched_inputs):
        """
        Normalize, pad and batch the input images.
        """
        output = dict()

        if "alpha" in batched_inputs:
            alpha = batched_inputs["alpha"].to(self.device)
        else:
            alpha = None

        bbox = batched_inputs["bbox"].to(self.device)

        if self.training and self.coconut_self_training and sum([i == 'COCONut' for i in batched_inputs['dataset_name']]) >= 1:
            output['coconut_ori_img'] = []
            output['coconut_trimap'] = []
            output['coconut_bbox'] = []
            output['coconut_idx'] = []
            for i, dataset_name in enumerate(batched_inputs['dataset_name']):
                if dataset_name == 'COCONut':
                    # generate coconut_aug_img
                    img_np = np.uint8(batched_inputs["image"][i].permute(1, 2, 0).cpu().numpy() * 255.)
                    strong_aug_img = self.rand_aug(Image.fromarray(img_np), cutout = False)
                    strong_aug_img_tensor = torch.from_numpy(np.array(strong_aug_img)).to(self.device).permute(2, 0, 1)[None] / 255.
                    blur_kernel_sigma = 1.0 + random.random()  # random from 1.0 ~ 2.0
                    blur_filter = kf.GaussianBlur2d((101, 101), (blur_kernel_sigma, blur_kernel_sigma))
                    blur_strong_aug_img_tensor = blur_filter(strong_aug_img_tensor)[0]

                    output['coconut_ori_img'].append(batched_inputs["image"][i])
                    batched_inputs["image"][i] = blur_strong_aug_img_tensor

                    # generate coconut_trimap
                    coconut_mask = (alpha[i] != 0).float()
                    mask_area = torch.sum(coconut_mask)
                    kernel_size = max(self.matting_decoder.min_kernel_size, int((mask_area ** 0.5) / 7))  # self.matting_decoder.kernel_div
                    kernel_size = min(kernel_size, self.matting_decoder.gen_trimap.max_kernal - 1)
                    output['coconut_trimap'].append(self.matting_decoder.gen_trimap(coconut_mask[0], kernel_size=kernel_size)[None])

                    output['coconut_bbox'].append(bbox[i])
                    output['coconut_idx'].append(i)

            output['coconut_ori_img'] = torch.stack(output['coconut_ori_img']).to(self.device)
            output['coconut_ori_img'] = (output['coconut_ori_img'] - self.pixel_mean) / self.pixel_std
            output['coconut_trimap'] = torch.stack(output['coconut_trimap']).to(self.device)
            output['coconut_bbox'] = torch.stack(output['coconut_bbox']).to(self.device)

        images = batched_inputs["image"].to(self.device)
        images = (images - self.pixel_mean) / self.pixel_std
        assert images.shape[-2] == images.shape[-1] == 1024

        if 'trimap' in batched_inputs.keys():
            trimap = batched_inputs["trimap"].to(self.device)
            assert len(torch.unique(trimap)) <= 3
        else:
            trimap = None

        output['images'] = images
        output['bbox'] = bbox
        output['alpha'] = alpha
        output['trimap'] = trimap

        if 'hr_images' in batched_inputs.keys():
            hr_images = batched_inputs["hr_images"].to(self.device)
            hr_images = (hr_images - self.pixel_mean) / self.pixel_std
            _, _, H, W = hr_images.shape
            if hr_images.shape[-1] % 16 != 0 or hr_images.shape[-2] % 16 != 0:
                new_H = (16 - hr_images.shape[-2] % 16) + H if hr_images.shape[-2] % 16 != 0 else H
                new_W = (16 - hr_images.shape[-1] % 16) + W if hr_images.shape[-1] % 16 != 0 else W
                new_hr_images = torch.zeros((hr_images.shape[0], hr_images.shape[1], new_H, new_W)).to(self.device)
                new_hr_images[:,:,:H,:W] = hr_images[:,:,:,:]
                del hr_images
                hr_images = new_hr_images
            output['hr_images'] = hr_images
            output['hr_images_ori_h_w'] = (H, W)

        if 'dataset_name' in batched_inputs.keys():
            output['dataset_name'] = batched_inputs["dataset_name"]

        if self.backbone_condition:
            if self.w_only_bbox_cond:
                output['condition'] = output['bbox'][:, 0, :]
            else:
                multi_fg_float = batched_inputs["multi_fg"].to(bbox.device).float()[:, None] * 512
                output['condition'] = torch.concat((output['bbox'][:, 0, :], multi_fg_float), dim=-1)
        else:
            output['condition'] = None

        return output