File size: 10,404 Bytes
8b4c6c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import defaultdict


class MattingCriterion(nn.Module):
    def __init__(
        self,
        *,
        losses,
        image_size = 1024,
    ):
        super(MattingCriterion, self).__init__()
        self.losses = losses
        self.image_size = image_size

    def loss_gradient_penalty(self, sample_map, preds, targets):

        #sample_map for unknown area
        if torch.sum(sample_map) == 0:
            scale = 0
        else:
            scale = sample_map.shape[0] * (self.image_size ** 2) / torch.sum(sample_map)

        #gradient in x
        sobel_x_kernel = torch.tensor([[[[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]]]).type(dtype=preds.type())
        delta_pred_x = F.conv2d(preds, weight=sobel_x_kernel, padding=1)
        delta_gt_x = F.conv2d(targets, weight=sobel_x_kernel, padding=1)

        #gradient in y 
        sobel_y_kernel = torch.tensor([[[[-1, -2, -1], [0, 0, 0], [1, 2, 1]]]]).type(dtype=preds.type())
        delta_pred_y = F.conv2d(preds, weight=sobel_y_kernel, padding=1)
        delta_gt_y = F.conv2d(targets, weight=sobel_y_kernel, padding=1)

        #loss
        loss = (F.l1_loss(delta_pred_x * sample_map, delta_gt_x * sample_map) * scale + \
            F.l1_loss(delta_pred_y * sample_map, delta_gt_y * sample_map) * scale + \
            0.01 * torch.mean(torch.abs(delta_pred_x * sample_map)) * scale +  \
            0.01 * torch.mean(torch.abs(delta_pred_y * sample_map)) * scale)

        return dict(loss_gradient_penalty=loss)

    def loss_pha_laplacian(self, preds, targets):
        loss = laplacian_loss(preds, targets)
        return dict(loss_pha_laplacian=loss)

    def unknown_l1_loss(self, sample_map, preds, targets):
        
        if torch.sum(sample_map) == 0:
            scale = 0
        else:
            scale = sample_map.shape[0] * (self.image_size ** 2) / torch.sum(sample_map)
        # scale = 1

        loss = F.l1_loss(preds * sample_map, targets * sample_map) * scale

        return dict(unknown_l1_loss=loss)

    def known_l1_loss(self, sample_map, preds, targets):
        new_sample_map = torch.zeros_like(sample_map)
        new_sample_map[sample_map==0] = 1
        
        if torch.sum(new_sample_map) == 0:
            scale = 0
        else:
            scale = new_sample_map.shape[0] * (self.image_size ** 2) / torch.sum(new_sample_map)
        # scale = 1
        
        loss = F.l1_loss(preds * new_sample_map, targets * new_sample_map) * scale

        return dict(known_l1_loss=loss)

    def get_loss(self, k, sample_map, preds, targets):
        if k=='unknown_l1_loss' or k=='known_l1_loss' or k=='loss_gradient_penalty':
            losses = getattr(self, k)(sample_map, preds, targets)
        else:
            losses = getattr(self, k)(preds, targets)
        assert len(list(losses.keys())) == 1
        return losses[list(losses.keys())[0]]

    def forward(self, sample_map, preds, targets, batch_weight=None):
        losses = {i: torch.tensor(0.0, device=sample_map.device) for i in self.losses}
        for k in self.losses:
            if batch_weight is None:
                losses[k] += self.get_loss(k, sample_map, preds, targets)
            else:
                for i, loss_weight in enumerate(batch_weight):
                    if loss_weight == -1.0 and k != 'known_l1_loss':
                        continue
                    else:
                        losses[k] += self.get_loss(k, sample_map[i: i + 1], preds[i: i + 1], targets[i: i + 1]) * abs(loss_weight)
        return losses


#-----------------Laplacian Loss-------------------------#
def laplacian_loss(pred, true, max_levels=5):
    kernel = gauss_kernel(device=pred.device, dtype=pred.dtype)
    pred_pyramid = laplacian_pyramid(pred, kernel, max_levels)
    true_pyramid = laplacian_pyramid(true, kernel, max_levels)
    loss = 0
    for level in range(max_levels):
        loss += (2 ** level) * F.l1_loss(pred_pyramid[level], true_pyramid[level])
    return loss / max_levels

def laplacian_pyramid(img, kernel, max_levels):
    current = img
    pyramid = []
    for _ in range(max_levels):
        current = crop_to_even_size(current)
        down = downsample(current, kernel)
        up = upsample(down, kernel)
        diff = current - up
        pyramid.append(diff)
        current = down
    return pyramid

def gauss_kernel(device='cpu', dtype=torch.float32):
    kernel = torch.tensor([[1,  4,  6,  4, 1],
                        [4, 16, 24, 16, 4],
                        [6, 24, 36, 24, 6],
                        [4, 16, 24, 16, 4],
                        [1,  4,  6,  4, 1]], device=device, dtype=dtype)
    kernel /= 256
    kernel = kernel[None, None, :, :]
    return kernel

def gauss_convolution(img, kernel):
    B, C, H, W = img.shape
    img = img.reshape(B * C, 1, H, W)
    img = F.pad(img, (2, 2, 2, 2), mode='reflect')
    img = F.conv2d(img, kernel)
    img = img.reshape(B, C, H, W)
    return img

def downsample(img, kernel):
    img = gauss_convolution(img, kernel)
    img = img[:, :, ::2, ::2]
    return img

def upsample(img, kernel):
    B, C, H, W = img.shape
    out = torch.zeros((B, C, H * 2, W * 2), device=img.device, dtype=img.dtype)
    out[:, :, ::2, ::2] = img * 4
    out = gauss_convolution(out, kernel)
    return out

def crop_to_even_size(img):
    H, W = img.shape[2:]
    H = H - H % 2
    W = W - W % 2
    return img[:, :, :H, :W]

def normalized_focal_loss(pred, gt, gamma=2, class_num=3, norm=True, beta_detach=False, beta_sum_detach=False):
    pred_logits = F.softmax(pred, dim=1)  # [B, 3, H, W]
    gt_one_hot = F.one_hot(gt, class_num).permute(0, 3, 1, 2)  # [B, 3, H, W]
    p = (pred_logits * gt_one_hot).sum(dim=1)  # [B, H, W]
    beta = (1 - p) ** gamma  # [B, H, W]
    beta_sum = torch.sum(beta, dim=(-2, -1), keepdim=True) / (pred.shape[-1] * pred.shape[-2])  # [B, 1, 1]

    if beta_detach:
        beta = beta.detach()
    if beta_sum_detach:
        beta_sum = beta_sum.detach()

    if norm:
        loss = 1 / beta_sum * beta * (-torch.log(p))
        return torch.mean(loss)
    else:
        loss = beta * (-torch.log(p))
        return torch.mean(loss)

class GHMC(nn.Module):
    def __init__(self, bins=10, momentum=0.75, loss_weight=1.0, device='cuda', norm=False):
        super(GHMC, self).__init__()
        self.bins = bins
        self.momentum = momentum
        self.edges = torch.arange(bins + 1).float().cuda() / bins
        self.edges[-1] += 1e-6
        if momentum > 0:
            self.acc_sum = torch.zeros(bins).cuda()
        self.loss_weight = loss_weight
        self.device = device
        self.norm = norm

    def forward(self, pred, target, *args, **kwargs):
        """Calculate the GHM-C loss.
        Args:
            pred (float tensor of size [batch_num, class_num]):
                The direct prediction of classification fc layer.
            target (float tensor of size [batch_num, class_num]):
                Binary class target for each sample.
            label_weight (float tensor of size [batch_num, class_num]):
                the value is 1 if the sample is valid and 0 if ignored.
        Returns:
            The gradient harmonized loss.
        """

        # the target should be binary class label
        # if pred.dim() != target.dim():
        #     target, label_weight = _expand_binary_labels(
        #                             target, label_weight, pred.size(-1))
        # target, label_weight = target.float(), label_weight.float()
        # pdb.set_trace()

        # pred: [B, C, H, W], target: [B, H, W]
        pred = pred.permute(0, 2, 3, 1).reshape(-1, 3)  # [B x H x W, C]
        target = target.reshape(-1)  # [B x H x W]
        # self.acc_sum = self.acc_sum.type(pred.dtype)

        edges = self.edges
        mmt = self.momentum
        weights = torch.zeros((target.shape),dtype=pred.dtype).to(self.device)

        # gradient length
        #g = 1 - torch.index_select(F.softmax(pred,dim=1).detach(), dim=0, index=target)
        g = 1 - torch.gather(F.softmax(pred,dim=1).detach(),dim=1,index=target.unsqueeze(1))
        #g = torch.abs(pred.softmax(2).detach() - target)

        tot = 1.0
        n = 0  # n valid bins
        for i in range(self.bins):
            inds = (g >= edges[i]) & (g < edges[i+1])
            num_in_bin = inds.sum().item()
            if num_in_bin > 0:
                idx = torch.nonzero(inds)[:, 0]
                if mmt > 0:
                    self.acc_sum[i] = mmt * self.acc_sum[i] \
                        + (1 - mmt) * num_in_bin
                    # pdb.set_trace()#scatter_ index_put_
                    #BB=torch.nonzero(inds)
                    _weight_idx = tot / self.acc_sum[i]
                    weights = weights.to(dtype=_weight_idx.dtype)
                    weights[idx] = _weight_idx
                    # weights.scatter_(0, torch.nonzero(inds)[:,0], tot / self.acc_sum[i])
                    # # weights.index_put_(inds, tot / self.acc_sum[i])
                    # weights[inds] = tot / self.acc_sum[i] # * torch.ones((len(inds)))
                else:
                    weights[idx] = tot / num_in_bin
                n += 1
        if n > 0:
            weights = weights / n

            # pdb.set_trace()
            # loss = (weights * F.cross_entropy(pred, target, reduction='none')).sum() / tot / pred.shape[0]
        if self.norm:
            weights = weights / torch.sum(weights).detach()

        loss = - ((weights.unsqueeze(1) * torch.gather(F.log_softmax(pred, dim=1), dim=1, index=target.unsqueeze(1))).sum() )  # / pred.shape[0]

        # loss3= F.cross_entropy(pred, target, reduction='mean')
        # loss4 = - ((torch.gather(F.log_softmax(pred, dim=1), dim=1, index=target.unsqueeze(1))).sum() / pred.shape[0])

        # pro = F.softmax(logits, dim=1)
        #
        # label_onehot = torch.zeros_like(logits).scatter_(1, labels.unsqueeze(1), 1)
        # with torch.no_grad():
        #     weight_matrix = (1 - pro) ** self.gamma
        # # pdb.set_trace()
        # fl = - (weight_matrix * (label_onehot * (pro + self.eps).log())).sum() / pro.shape[0]

        return loss

if __name__ == '__main__':
    pred = torch.randn(2, 3, 1024, 1024)
    gt =torch.argmax(torch.randn(2, 3, 1024, 1024), dim=1)
    loss = normalized_focal_loss(pred, gt)
    print(loss)